3 硬件结构
为减轻主控器的负担,系统采用主从式控制系统。分别用三个MCS-96单片机处理来自测距传感器、超声传感器、寻找目标传感器的数据,并进行数据融合;最后把处理好的数据通过RS-232串口上传至上位机PC/104 386SX系统。由PC/104主机做出下一步的处理。系统硬件结构框图如图1所示。
PC/104主机主要用来完成对三个下位机所处理的数据进行采集,然后根据情况调整小车前向电机、转向电机的运动,并将光电编码器测量到的小车速度等信息显示在液晶屏幕上,如果发生碰撞现象,还可用语音进行报警等操作。上位机选用PC/104主机是因为:第一,386系统处理速度比单片机要迅速;第二,为了便于以后系统的扩展。
为避免其它不可预知的故障出现,使机器不能正常运行,系统还设置了一个硬复位按钮。
4 软件设计
各个下位机的软件设计流程是先检测各类传感器的数据,再用D-S法进行数据融合,最后等待主机的指令,把融合后的数据上传至主机。
主机的软件设计流程是通过串口循环接收来自三个不同下位机的数据(三个下位机的通讯握手地址不同)。根据寻找目标传感器所测到的目标位置,进行路径规划,调整前向电机与转向电机的运动方向。再根据测距传感器所测到的目标距离,调整电机的运动速度。当避障传感器发现前方有障碍物或小车与障碍物发生碰撞时,要立即停止运行,重新规划路径。读取光电编码器的值,把小车速度显示在液晶显示器上。如果出现小车与障碍物发生碰撞或找不到目标光源物体时要通过语音芯片进行报警。
主机和下位机程序内部均设有看门狗程序,避免程序跑飞。
5 总结
本系统设计了一个基于多传感器数据融合技术的智能机器人。该设计运用了多传感器数据融合技术,采用了主从式控制系统,使机器人能够更准确的寻找目标与避障,有很好的鲁棒性。
本文作者创新点:(1)提出一种基于多传感器数据融合技术的智能机器人系统设计,软硬件工作可靠。(2)用到D-S融合算法,提供与环境有关的关于系统状态的足够的与可靠的信息,使机器人能够自主规划路径、躲避障碍物,最终向目标靠近。(3)系统采用了主从式控制系统,有很好的扩展性。(4)良好的抗干扰能力。