·上一文章:基于ARM的智能家居远程监控系统设计
·下一文章:基于μC/OSⅡ的实时任务模型研究与应用
上式K取值应足够大。如果用瞬时一2e(n)X(n)来代替上面对-2E[e(n)X(n)]的估计运算,就产生了另一种算法——随机梯度法,即Widrow-Hoft的LMS算法。此时迭代公式为:
W(n+1)=W(n)+2ue(n)X(n)
以后讨论的LMS算法都是基于WidrOW-Hoff的LMS算法。上式的迭代公式假定滤波器结构为横向结构。对于对称横向型结构也可推出类似的迭代公式:
W(n+1)=W(n)+2ue(n)[X(n)+X(n一N+1)]
4 自适应滤波算法的理论仿真
使用Matlab编程,采用自适应滤波器技术实现信噪分离,也就是去噪。程序如下:
程序运行的结果如图3所示。
通过CCS软件环境,把滤波程序烧录到DSP芯片中,在CCS DSK C5000环境下输出仿真结果:输入信号为余弦信号和随机噪声的叠加。程序正确运行后,观察运行结果,得出如图4,图5所示的仿真图。
5 结 语
通过仿真实验结果表明:自适应滤波器却能很好地消除叠加在信号上的噪声,虽然也可以用固定滤波器来实现,但设计固定滤波器时需要预先知道信号和噪声的统计特性,而自适应滤波器则不需要,并且当信号和噪声的统计特性发生变化时,自适应滤波器也能自动地调节其冲激响应特性来适应新的情况,因此,自适应滤波器具有更加广阔的应用前景。