最后,RF捷变性可通过避免干扰技术提高可靠性,也就是通过RF频谱跳频或者移动来避免干扰。解决方案的自由度越高,就越有利于找到RF干扰较小的环境,降低干扰。目前使用的RF捷变性技术主要分为两大类,一类是伪随机或算法型跳频方案,可在频谱内持续跳频,以尽量减少干扰,另一类是仅在需要时才移动的智能方案(见图2)。从可靠性角度看,第一类捷变性方案存在的一个问题是,如果RF频谱内比较繁忙,那么可能会无意中跳频到干扰较高的频谱部分中去;而智能型技术则会找到干扰较低的位置并随即停止移动。不管采用何种捷变性方案,RF捷变性都取决于RF频谱的使用和通道的大小。
图2:RF频谱跳频技术的示意图。
依靠RF频谱应用,捷变性可以有或多或少的空间。例如,由于频率分配的缘故,低频解决方案比高频解决方案的空间较小。2.4GHz解决方案支持约100MHz的可用频谱,而900MHz解决方案仅支持约26MHz的空间。通道大小也是影响RF捷变性的一个重要因素。通道尺寸越小,频谱中捷变性的空间就越大,从而能以更高的RF捷变性来避免干扰,在干扰信号间找到干扰最小的工作频率。例如,就2.4GHz无线解决方案而言,基于802.15.4的解决方案一般宽度为5MHz,只有16个可用的通道,而宽度为1MHz的解决方案通常支持80个可用通道,因此能在更多通道间移动以避免干扰。
因此,可靠性与RF频谱应用的链路预算与RF捷变性成正比。链路预算越大,RF捷变性就越高,在同一RF频谱上的给定无线解决方案的可靠性就越高。此外,尽管某些解决方案在给定环境下针对某一RF频谱性能出色,如布满水管的工厂中的低频通信,但这种解决方案的性能仍比不上最大化链路预算和RF捷变性的较高频率解决方案。因此,尽管差别很难量化,我们仍很容易理解比较无线解决方案时的逻辑,以及最大化系统睡眠时间并减少功耗的方法。
优化可靠性和功率效率
嵌入式无线解决方案的另一新术语是功率效率,即系统通过有源和无源技术来最小化功耗的量度。效率越高,节约的电力就越多。大多数时间都处于睡眠模式最低功耗状态下的高可靠性系统,其功率效率一般比拥有较低的发送和接收状态、但可靠性不足的其他系统更高,因为这些系统处于休眠模式的时间较短。因此,可靠性是反映系统真实功率效率的主要指标。
可靠性和功率效率机制协作可最大化节能效果,不过除了上述机制,还能采用其他技术来提高功率效率,并尽可能减小对系统可靠性的影响。这些技术包括控制动态数据速率、输出功率级别的活动链路和电源管理等系统行为。通过最小化不必要的输出功率,持续关注最小化输出功率以确保只使用通信所必须的最低功耗解决方案,不仅可靠,而且节能。此外,如果解决方案能根据环境条件调节数据速率,并尽可能缩短空中通信时间,也可以最小化系统功耗,提高功率效率。这种节能技术尽管在无线电技术领域并不算新生事物,但在确保系统致力于真正最小化系统功耗方面确实是一项新技术。
本文小结
可靠性是解决方案节能效果的主要指标,也可优化最大化系统休眠时间及最小化通信时间。最后,也指出了比较组件数据表的典型方法不能解决功率效率和可靠性等系统级功能的原因。虽然测量系统中使用组件的典型功耗是比较无线解决方案更传统的方法,但其不能全面反映出特定解决方案最小化系统功耗的情况。例如,大多数时间都处于最低功耗的睡眠模式下的高可靠性系统,比拥有较低发送和接收功率级别但不太可靠的其他系统更节能,并能保存最大量的系统电力。这是因为这些不太可靠的系统处于休眠模式的时间较短,而重复发射或通信的时间较多。