首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
基于DM642的智能视频监控系统的DSP实现
来源:本站整理  作者:佚名  2010-01-20 09:30:59



  DSP软件包括自启动、初始化、和线程创建,流程如图2所示。

2.jpgattachments/day_091221/09122110081e7dc539d3387a84.jpg" onload="return imgresize(this);" onclick="javascript:window.open(this.src);" style="cursor:pointer;"/> 
  图2中第五步动态创建了1个算法处理线程(ProcessTsk)、2个PCI通信线程(SendTsk,ReceiveTsk)以及一个中断服务子程序(PCI_ISR):ProcessTsk根据客户端为每个通道设定的监控规则,对通道中的图像进行算法分析,若有目标违规,则记录违规场景,产生报警信息,否则送出原始图像。SendTsk负责把ProcessTsk产生的报警信息或者图像通过PCI传输到PC端;ReceiveTsk负责接收来自本地板卡的模拟摄像头和来自PC端的网络摄像头图像,以及PC端来的信息。并传递给ProcessTsk;PCI_ISR负责监听来自PC端的请求,根据不同请求发送不同的旗语,控制线程间的运行。

  主机服务器准备传输控制命令或者图像的时候,向DSP发送中断请求。PCI_ISR将响应这些请求,根据主机服务器的不同信息向其他线程发送不同的控制旗语:如果是PC端接收一帧图像完毕,则向SendTsk 发旗语PCI_READ_OK,表示可以接收下一帧图像;如果是断开、连接通道请求,则向ReceiveTsk发送旗语PCI_WRITE_OK,表示可以接收信息。ReceiveTsk接收网络摄像机或者模拟摄像机图像和控制命令。如果收到图像,将其存储在SDRAM的一个缓冲区中,以待进行算法分析; 如果收到控制命令,将其存储在由PC、DSP共同维护的一个缓冲区中。然后发起SCOM通信,把信息传送到ProcessTsk维护的SCOM中。 SCOM是RF5框架中的通信模块,提供了队列 (Queue)和旗语(Semaphore)的双重功能。ProcessTsk收到信息后,会使用视频缓冲区和控制命令缓冲区中的数据作为算法参数进行计算。ProcessTsk计算完成后,会产生相应的结果,比如警报或者处理信息。这些数据会保存在一个字节数组中,然后将其打包封装成一个Message 对象,将其发送到SendTsk维护的SCOM中,SendTsk接收到这个Message包后,对其进行相应的处理,然后发送到PC主机。线程通信如图 3所示。

  ·PC端软件

  在服务器主机端,主要实现三个功能:(1)接收来自网络摄像头的视频流并解码,对应模块为网络摄像机模块;(2)构建用户界面,即客户端模块,记录用户算法设置、控制命令等,用户可以根据自己的需求在规则设置界面中对特定的通道设置算法参数和控制命令等;(3)将图像数据和算法参数、控制命令传给 DSP端,对应模块为后台服务模块。

  算法设计与DSP实现

  基于DM642的智能视频监控系统的核心是智能视频监控算法,本算法可以实现对监控目标物越线产生报警,对贵重物体消失产生报警,对可疑物体产生报警。算法原理:首先利用改进的帧间差分法来初始化背景模型,得到自适应背景图像[9];然后把当前图像和背景图像做差分运算;再使用动态阈值法对差值图像二值化,引入形态学噪声滤波器来消除噪声影响[8];进而使用快速二值图像连通域标记算法提取动目标;最后与用户预先设置的警戒规则进行比较,如有违规,产生报警信息。算法流程如图4所示。

3.jpgattachments/day_091221/0912211008f3b87d1118d05583.jpg" onload="return imgresize(this);" onclick="javascript:window.open(this.src);" style="cursor:pointer;"/> 


  自适应背景模型建立

  在运动目标检测过程中背景模型建立的准确与否直接影响到目标检测结果的好坏。由于背景是个渐变的过程,所以采用了自适应背景更新方法:在视频图像序列中先假设第一帧图像为参考图像I0,在随后的图像序列中找两帧图像I1和I2,要求运动部分在I0,I1以及I2中所占区域没有重叠,将三帧图像的灰度值平均得到图像I:

4.jpgattachments/day_091221/09122110088d418ab076976e04.jpg" onload="return imgresize(this);" onclick="javascript:window.open(this.src);" style="cursor:pointer;"/> 


  将图像I与I0进行比较,如果差别较大(差值超出某一阈值T0),则为目标区域,否则为背景区域;在目标区域,进一步判断I1与I2的灰度值,如差别不大(差值小于某一阈值T1),则可用I1或I2中对应区域作为背景对应区域,否则用I0中对应区域作为背景对应区域,经过这一替代,就可以得到一个不包含运动目标的背景图像Ib。然后用此参考图像初始化背景图像模型,公式如下:

5.jpgattachments/day_091221/091221100830856ab3def5cd3c.jpg" onload="return imgresize(this);" onclick="javascript:window.open(this.src);" style="cursor:pointer;"/> 
  差值图像建立及二值化

  自适应背景BL产生后,每一帧视频图像将与BL差分,并得到差分后的差值图像,进而进行二值化。在这一过程中,阈值选取的优劣是二值化结果好坏的关键。本文采用动态阈值法进行二值化处理。它的基本思想是对于需要二值化的每一帧差值图像,确定一个最佳阈值,使图像进行二值化处理后,能方便而准确的定位目标物。具体过程如下。

上一页  [1] [2] [3] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:135,414.10000 毫秒