节点上电初始化后,开始电能计量,同时与集中器建立路由,加入无线网络。其发送路由请求至中心节点若未接收到中心节点的路由应答,则广播其路由请求。已加入网络的节点接收到路由请求帧后,进行计算,若在规定的跳数之内,则返回路由响应。新节点接收到路由响应帧后,即建立起到中心节点的路由;节点收到路由错误帧后,删除本节点中中断的路由,更新路由表。中心节点收到路由错误帧后,删除其路由表中所有中断的路由,并开始新的路由请求,建立中断节点的新路由,并更新路由表。
4 通信协议
在通信参考模型中,严格定义了各层协议的格式和关键字,并在参照青岛东软载波通信协议的应用层和数据链路层,同时遵循国家电力行业多功能电能表通信规约DL/T645—1997的基础上,根据无线通信的特点进行了修改和扩充。
应用层协议分为2种:普通抄表帧和中继转发帧。两者都对DL/T645帧的控制域进行了重新定义,后者还对DL/T645格式进行了一定的扩充。数据抄读中继转发帧格式如下:
网络层的数据帧包括路由请求帧、路由请求响应帧、路由错误帧3种。以路由请求帧为例,其格式如下:
在青岛东软载波通信参考模型中增加了网络层,所以数据链路层对青岛东软MAC协议格式中的控制码进行了重定义。集中器与采集器之间数据链路层帧格式可由控制字段位定义来决定。控制域位定义如下:
物理层,由nRF905无线透传模块实现。在系统中,一方面,nRF905一次最大发送数据的长度为32个字节;另一方面,为了提高系统的通信效率,数据链路层通常把较长的数据按照一定的格式分为长度不同的数据包分别发送,且通过加入CSMA机制来解决广播冲突等问题。
结 语
无线抄表系统是未来自动集抄系统发展的必然趋势,本文设计的自动抄表系统定义了通信参考模型,增加了改进的自组织路由算法,有效地延长了抄表距离。通过自定义的通信帧增强了系统可靠性,提高了通信效率。该系统还具有良好的通用性和可扩展性,应用层协议稍加改动后可以应用到无线传感、家庭智能等更多领域。