在FSK方案中,发送器将发送信号调制到调制频率来发送数据。这可以通过改变石英晶体的负载电容来实现,从而使之工作在不同频率。同样,在ASK方案中,数据以载波的有和无进行调制,可以通过控制振荡器的输出来实现。
由于CMOS振荡器可以非常容易地被集成到微控制器或无线收发器中,在TPMS系统里使用CMOS振荡器可以获得高集成度和降低成本的优势。
此外,由于CMOS振荡器没有机械震动部件,它可以提供比石英晶体更好的耐机械震动和冲击性。在无线发送器中,经过特殊设计的低功耗CMOS振荡器可以直接生成载频(通常是325MHz或433MHz),而不需要PLL,并因此能够降低整个系统的功耗。通过使用CMOS振荡器的控制和补偿电路,FSK和ASK调制电路可以非常容易地内置到振荡器中。
近距离通信(NFC)是另一个应用广泛的无线接口,它在主机和集线器设备之间实现近距离和高频通信。这个接口是基于感应耦合的,并规定阅读器通过无线方式向NFC设备发送功率和时钟信号,以及发送和接收控制与数据位。
与射频识别标签(RFID)相似,NFC接口需要13.56MHz的频率基准。在大多数应用中,NFC产品尺寸非常小,而采用半导体技术就可以很容易地实现这个要求。CMOS振荡器能够以晶圆的形式提供,并且非常容易地封装在多芯片封装中。封装成本的降低排除了现今低成本消费电子产品器件应用的一大障碍,并使NFC设备尺寸减小。通过使用CMOS振荡器,采用多管芯封装技术,收发器、控制器和存储器可以和频率源集成在单芯片、低成本的塑料封装中,从而减少总体器件数量,降低PCB设计的复杂度。
远程无钥匙通行(RKE)设备也是另外一个利用CMOS振荡器的典型无线应用。这些简单的单向通信产品在汽车市场中被广泛应用。它们工作在无线频谱的ISM频段,美国和日本允许的频段为315MHz,欧洲允许的频段是433.92MHz。就像在TPMS应用中一样,这些频率需要通过高频SAW谐振器或通过低频石英晶体振荡器倍频PLL产生。另一个选择是使用特殊设计的、极低功耗CMOS振荡器来直接产生这么高的频率,并集成到RKE无线发送器中,从而降低成本和节省PCB面积。
采用CMOS技术提供频率参考源比采用传统频率发生方法有更多的优点。而最近发布的CMOS时钟发生器主要是针对有线应用设计的,可以在高频率下工作、尺寸小和易于集成的优点使其能够非常容易地扩展到更加广泛的无线应用中。在有些应用中,CMOS振荡器可以为那些要求严格的产品改善性能;而在另外一些应用中,通过它们就能够设计出全新的无线产品且避免使用非半导体器件。