首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
基于虚拟多传感器信息融合的粮情预警系统
来源:本站整理  作者:佚名  2009-04-10 09:53:14




    通过对粮食颗粒的灰度图像进行纹理分析,获得与结构相关的灰度分布的统计信息,可以实现对两幅图像的匹配分析,并作为判断粮情变化的依据。对粮食颗粒灰度图像的分析采用基于不变矩的图像纹理的统计算法。该算法首先将原始图像进行分块,利用加窗傅立叶变换进行空域滤波增强,去除图像在各个空间频率处的噪声,增强图像中的纹理结构信息。然后选择图像中曲率最大的点进行特征提取,以提取的特征点为中心,对图像进行局部的网格化处理,针对每个单元格计算其7个不变矩,对所有单元格各自的不变矩求和得到特征向量。同时借助最大类间方差阈值分割方法(OTSU),将图中的单元格区分为前景和背景,并在求和时赋予不同的权重,可进一步提高图像匹配的精度。小麦图像纹理特征提取过程如图4所示。最后利用特征空间中两特征向量间的距离作为相似度衡量的标准。可采用余弦距离来表示。特征向量间余弦距离的定义为:设特征空间中两特征向量分别为

   

3 信息融合
   
通过以上方法将温湿度、图像数据经过变换,得到具有不同特性的虚拟多传感器信息。利用D-S证据理论进行信息融合,D-S证据理论是由Dempster提出来的用概率上下限来表示实际问题中的不确定性,后来通过ShaRer进一步发展成为系统化、理论化的不确定性推理理论。由于篇幅有限,在此只给出部分信息融合过程。
    通过实际测量的数据,经过计算得到某一区域的四个虚拟传感器信度值m1,m2,m3,m4如表l,用C表示可信度,N表示不可信度。

    按照Dempster组合公式将m1和m2,m3和m4组合,结果如表2所示,其中φ表示空集。

    由表2可以得到m1和m2,m3和m4两个证据的不一致因子,分别用k1,k2表示。则kl,k2为:k1=0.236+0.125=0.361:k2=0.325+0.082=0.407计算得到两个基本信度m1和m2融合后的基本信度分配(用m12表示),m3和m4融合后的基本信度分配(用m34表示)为:

   

    最后再对得到两个基本信度m12和m34融合,基本信度分配(用m1234表示),见表3。

    则有:k=0.072+0.075=0.147
    m1234(C)=0.847/(1-k)≈0.99
    由结果可知,通过融合后粮情变化的基本信度为0.99,故可以明显地判断出该区域的粮情变化很大,发生霉变、虫害的可能性较高。


4 结论
   
本文通过对小麦仓储过程中的传感器信息选取合适的特征和计算所对应的特征统计量,应用少量的传感器,借助虚拟多传感器的技术以及D-S证据理论融合算法,能够在粮情监测中完成目标识别,并对小麦仓储过程中所发生的不良变化,及时发出预警信息,以确保小麦储藏安全。

上一页  [1] [2] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:215,921.90000 毫秒