4.2 建立大气传输模型
目标至红外探测器的路径上存在着大气,物体的红外辐射受到大气中某些气体选择性吸收和悬浮微粒散射等因素的作用而产生衰减。许多大气因素,如风、云、雾、雨、雪等,直接影响大气衰减。计算大气衰减的方法很多,主要有经验公式法和大气模型法,目前精度较高的是美国的LOWTRAN模型。而在Vega中,利用MAT设定大气传输模型,计算大气透射率、大气背景辐射、太阳或月亮的直接辐射等。MAT工具用来创建、编辑、生成大气传输特性的数据库,首先设定地理位置、大气状态、气象条件和光谱波段等参数,然后利用MOSART和TERTEM软件,根据所输入的参数,得到特定光谱范围内的大气传输特性以及相关物质的辐射特性,生成相应的数据库,以提供红外成像仿真过程中Sensor模块所需要的数据。
由于大气传输特性的计算十分复杂和繁琐,且计算量巨大,因此这部分的工作要在仿真前完成,以保证仿真的实时性。MAT将一种大气状况下,各个时间内的传输特性存放在一个数据库中,仿真过程中只要调用相应的数据库就可以得到所需数据。
4.3 场景的红外辐射建模
红外成像仿真的关键是确定物体表面的温度分布和辐射场,通过温度场来计算各点的红外辐射。实际情况下,目标的表面温度和辐射通量主要受背景辐射和内热源的影响,必须建立其适当的背景和内热源模型。对于无内热源目标,例如草地、人造物等它们的温度分布和自身材料的热特性、光谱反射特性以及背景辐射等因素有关,通过求解热交换方程来确定。而对于有内热源目标,例如飞机、车辆等,它们自身的某些部位是内热源,可以产生热量,是目标温度分布的主要因素,对此应根据实际情况给定目标的温度分布或建立内热源模型求解其温度分布。目前从国内外的研究状况来看,1996年,Hyum提出用等效热阻把内热源与物体表面联系起来的模型,借以模拟内热源与物体表面间热传导的物理过程。这种方法不仅使模型具有物理意义,而且红外仿真效果也有很大提高。目前对背景红外成像仿真的方法基本上遵从测量、经验与理论相结合的原则。TMM工具为场景模型赋予材质纹理,每种材质都有其相应的光谱反射特性库和热特性库。由于纹理材质数据库是开放的,可以根据模型的表面温度分布或建立内热源模型求解其温度分布和实际物体的材料特性,建立相应纹理材质文件(.mtl),且该文件包含材质的热特性库和光谱反射特性库,再把建立的材质文件添加到Vega的材质数据库中。根据已经建立的大气传输模型和目标与背景模型以及目标与背景构成材料的物理属性,利用辐射度计算公式计算探测器上所接受到的红外辐射强度。Vega的Sensor模块用来模拟生成可见光谱段以外的图像,Sensor模块包括SensorVision和SensorWorks两个部分。利用它可以控制红外探测器的参数,模拟探测器对红外成像的影响,处理Sensor模块与其他模块以及MAT、TMM工具的连接与调用。得到在探测器成像面上对应像元的辐射亮度,并不是最终结果,数字图像反映的是灰度值,因此必须把辐射亮度转化为灰度等级,这是个量化的过程。按照将最大的辐射度对应于255,最小的辐射度对应于0的原则生成一个灰度图像。
4.4 场景红外图像的实时仿真
Vega读取已经生成的三维红外场景模型,并考虑各种目标以及观察者的运动状态,对场景中的静态及动态目标进行实时模拟,使场景中的各种动态目标运动起来。为了方便控制场景,本文利用了一种将Vega窗口植入到基于MFC的View窗口的方法。该方法实质是将Vega着色放进MFC的View窗口中进行。当前有两种可实现View窗口的Vega驱动:一是直接继承MFC中的CView类,称为直接继承模式;二是通过继承MFC中的CView类而派生出一个子类zsVegaView,称为模板方法模式。这个zsVegaView类提供了启动一个Vega线程最基本功能,还以虚函数的形式定义了特定的应用要进行操作的通用接口,因此用户的应用程序只需从zsVegaView派生出新类并根据需要重载必要的虚函数即可。本文采用了模板方法模式。zsVegaView类由CView类派生,并封装了Vega特性的变量、函数和定义运行线程。
5 结语
战场环境传感信息的可视化是一个庞大、复杂的系统工程。本文在分析SAR、红外成像仿真原理的基础上,给出了基于实时视景仿真软件Vega的战场环境传感信息的可视化方法,为战场环境传感信息的可视化研究提供了一个可行的方法。只要能建立目标的传感信息,就可以利用这些传感信息实现战场环境的可视化。虽然取得了较为理想的仿真结果,但有些工作,例如,如何获取更多传感信息数据,建立更大的传感信息数据库;如何在多台计算机上进行交互式仿真研究,充分体现仿真的实时性等方面仍然需要进一步的研究和探索。