3.3 横向通道控制
当滚动通道的输入指令为零时,即保持滚动角和角速度为零,则消除了俯仰通道和偏航通道的耦合作用,可分别控制3个通道。此时,对称结构导弹的俯仰通道和偏航通道的控制基本相同。
3.4 滚动通道控制
将舵机环节引入滚动通道,与纵向通道及航向通道类似,引入PID校正环节,分析系统,其角速度传递函数为:
式中,KMx为传递系数,TMx为倾斜时间常数。
4 仿真结果
为验证控制方案的正确性和控制效果,则给定以下导弹参数:KM=0.171 7(1/s)、TM=0.085 0(s)、ξM=0.111 2、T1=6.521 7(s)、KMx=170.778 9、TMx=1.006 3(s)分别对舵机系统、纵向通道系统、横向通道系统、滚动通道系统加入单位阶跃信号进行数字仿真,并对传统控制系统进行仿真,对比控制结果。图4为舵机系统时域阶跃响应曲线。由图4仿真曲线看出,超调量9.5%,上升时间41.9 ms,调节时间(2%误差带)88.8 ms,稳态误差为0。
图5为纵向通道时域阶跃响应曲线,从图5仿真曲线可看出,在精确考虑舵机环节情况下,PID校正环节纵向通道时域阶跃响应曲线反应良好,超调量11.4%,上升时间170.6 ms调节时间(2%误差带)356.3 ms,稳态误差为0。
图6为横向通道时域阶跃响应曲线。从图6仿真曲线看出,在精确考虑舵机环节情况下,PID校正环节横向通道时域阶跃响应曲线反应良好,超调量11.4%,上升时间168.3 ms调节时间(2%误差带)347.1 ms,稳态误差为0。
图7为滚转通道时域阶跃响应曲线。从图7的仿真曲线可看出,在精确考虑舵机环节的情况下,PID校正环节滚转通道的时域阶跃响应曲线反应良好,超调量9.81%,上升时间为178.6 ms,调节时间(2%误差带)397.1 ms,稳态误差为0。
5 结论
本文利用临界比例度法得到PID参数,利用MATLAB/Simulink进行时域仿真,从仿真结果看,该PID分通道控制方法可以提高传统气动舵导弹控制系统的准确性、快速性及稳定性。当然这只是给出与传统控制方案相比较的结果,实际的参数还要在实物仿真中不断调试,并对控制系统修正改进,以得到令人满意的控制效果。仿真结果表明,各通道系统反映良好,能够实现实时控制要求。