图3 PROFIBUS底层网络结构
3.1 设备控制层
在设备控制层中采用西门子的PROFIBUS-DP把各种电磁阀、离心泵、电机、温度传感器、压力传感器以及ET200分站等功能单元联结成一个整体。温度传感器选用Pt1O0铂电阻温度传感器,输出4—20mA电流信号,它抗干扰能力强,易于信号远传。压力传感器选用隔离式传感器组件和集成电路组件技术生产的耐蒸汽高温的压力传感器,具有线性好、温漂小、时间稳定性好等优点。
该层所涉及到的现场设备有:水提取罐、醇提取罐、储液罐、回收溶媒罐、浓缩罐、精馏塔、过滤器、冷凝器、加热器等。控制上述设备的下位执行机构有控制开关阀、PID调节阀、电磁流量计、液位计、温度变送器、压力变送器、自吸泵,出液泵以及热油泵等。底层PLC硬件配置:西门子公司的S7-300系列PLC,CPU的型号采用CPU315-2DP,ET200M模块6ES7 l53—2AA02—0XB0,电源模块6ES7 307-1KA00-0AA0,32点24V数字量输入模块6ES7 321—1BL00—0AA0,16点继电器输出模块6ES7 322—1HH00—0AA0,8路模拟量输入模块6ES7 331—7KF01—0AB0,8路热电阻输入模块6ES7 331-7PF00-0AB0,4路PID模块6ES7 355—0VH10—0AE0等。
在该系统中采用电炉进行加热,由于电炉的升温和保温是靠电阻丝加热,降温则是依靠自然环境冷却,当温度一旦出现超调就无法使用控制手段使其降温,具有升温单向性、非线性、不均匀增益和大滞后等特性,数学模型难以建立。由于系统具有大滞后和升温单向性特性,用常规PID控制方法,很容易造成积分饱和,因此难以得到满意的控制效果。为此,先用阶跃响应曲线法建立加热炉的初步数学模型,获得其大致的放大系数K,时间常数T和滞后时间r;然后用Ziegler—Nichols法整定PID参数,采用分段变系数增量式PID控制策略,实现对加热炉的控制。具体方法如图4所示,在开始至A点之前,可以给最大的控制量,使系统快速升温;AB两点之间采用PD控制;在临界稳态区,为了消除系统稳态误差,需要加入积分作用,采用PID控制;当超调大于5%时,输出为0停止加热。在本系统中采用西门子公司的S7-300系列的功能模块FM-355-2C实现PID控制。
图4 阶跃响应曲线示意图
3.2 监控层
监控层上位机部分:服务器采用Windows 2000 Server操作系统,监控软件采用西门子SIMATIC WINCC6.0 SP1。WINCC(Windows Control Center)组态软件是西门子公司与微软公司共同开发的,它承担了数据管理和采集、报警、历史趋势、数据记录及报表等工作。[3-5]其多级权限管理,电子记录等符合FDA 21 CFR PART 11的要求。提取部分的画面包括:提取工艺的静态流程图、动态流程图、控制仪表回路、加热部分、冷却部分、循环控制部分、事件报警、参数设定、报表打印、实时曲线和历史曲线显示、用户管理、OPC服务器、远程监控管理和帮助部分等。WINCC可以通过0DBC技术调用MicroSoft SQL Server建立数据库,数据库具有查询、删除、修改、备份、导入、导出等强大的功能支持。WINCC还可以通过DDE技术调用Excel建立数据报表。
监控层下位机部分: 下位机编程软件采用西门子公司的STEP 7软件,通过功能块FC编程实现分设备、分工艺的模块化,使各段控制程序相对独立且流程清晰。数据块DB的有序分类,使数据结构更合理、数据读写更安全。整套系统设置了自动和手动两套运行方案,在程序设计中将系统动作划分成多个动作段,使得系统在运行过程中随时可以“暂停”下来,维持在当前状态;还能再通过“继续”功能使系统在先前状态下继续运行下去。从而使得系统可以随时应对在运行过程中可能出现的一些突发事件,减少由于意外情况造成的程序运行中断,提高系统运行的安全可靠性。[6,7]
5 结论
本文介绍的中药提取监控系统,利用PROFIBUS技术构建底层网络,对每个关键工序进行数据监测、控制,实施整个过程的跟踪。系统既能进行单元操作,又能找出最佳工况条件,该系统已经成为中心的科研人员从事天然药物生产工艺研究、中试开发的有效手段并在实际应用中取得良好的效果。
本文作者创新点:将PROFIBUS技术引入“中药设备研发中心”的实验室项目建设中,利用其构建中药提取过程控制系统底层网络,使得实验室的科研人员可以更方便高效的从事中药生产工艺的研究和中试的开发。