3.1.2 采用流水线操作
流水线操作是DSP实现高速度、高效率的关键技术之一。只有在充分发挥作用的情况下,才可能达到最好性能。TMS320C6211的流水线与以前的C3x和C54x相比,有非常大的优势。主要表现在:简化流水线的控制以消除流水线互锁;增加流水线的深度来消除传统流水线结构在取指、数据访问和乘法操作上的瓶颈;取指、数据访问分为多个阶段,使得芯片可以高速访问存储空间。TMS320C6211的流水线分为3个阶段:指令读入(取指)、解码和执行,共11级。
3.1.3 特殊的硬件结构
乘法运算和加法运算在数字信号处理的算法中使用非常频繁。在通用的微处理器中,乘法运算是通过执行一串指令实现的,需要占用许多指令周期,影响处理速度。而DSP中,设置了硬件乘法器和MAC(乘法并累加),这些操作往往可以在单周期内完成,从而大幅提高了DSP进行乘法和累加运算的速度。在TMS320C6211中采用两个硬件乘法器实现乘法运算,只需要一个指令周期,大大提高了信号处理速度。此外,TMS320C6211内部的各种数据寄存器、移位寄存器等硬件结构,确保了DSP算法的快速性。
3.1.4 特殊的DSP指令系列和丰富的寻址方式
TM
图2示出了TMS320C6211 DSK模拟接口电路结构图。TITLC320AD535是一种所需外部器件最少的廉价数据转换器。其中C6211 McBSP0负责与模拟接口电路(AIC)语音通道实现串口通信。
3.3 外部存储器和扩展存储空间的特点
TMS320C6211 DSK支持4Mbyte(1Mbyte×32-bit)同步动态存储器(SDRAM),128Kbyte的闪存(Flash ROM)和存储器映射的I/O端口。扩展存储连接器可以支持异步存储和存储映射设备通过子板加在DSK板上(TMS320C6211 DSK的扩展存储器及其接口由2行80针的连接器实现)。其中,外部存储器SDRAM设备的电压为3.3V,扩展存储连接器支持3.3V和5V。
3.4 JTAG仿真器
TMS320C6211 DSK提供了内置的仿真器。通过并口或者外部的仿真器XDS510实现仿真。TISN74ACT8990 JTAG测试总线控制器(TBC)提供主机对TMS320C6211 DSK JATG接口的软件控制,这样便可以在没有外部仿真器的情况下,CCS调试器仍然可以调试目标板。
4 TMS320C6211 DSK在短波软件无线电侦察中的应用
4.1 方 案
在某系统中采用TMS320C6211 DSK、AD6644采集卡和工控机搭建一个宽带的侦察硬件平台,在此基础上实现对2MHz~30MHz带宽内的通信信号的全景侦察。如图3所示。
4.2 工作原理
本方案采用直接中频采样、DSP数字信号预处理、工控机主处理的程式,完成短波信号的侦察、分选识别。接收机输出10.7MHz中频信号,经过采集卡进行中频采样(所用到的A/D为A/D6644)完成数据采集,并通过TMS320C6211 DSK的EMIF(ExtendedMemory Interface,外部存储器接口)接口实现数据传输,DSP完成数字信号的FFT运算、极值判断等预处理部分,并将处理后的数据通过并口传送给主机以便进行分选、识别、显示的主要处理部分。
4.3 C6211的外部存储器接口
DSK板上具有与EMIF相连的外扩展子卡接口,它原本是用来扩展片外存储器的硬件接口,可以为多种同步和异步存储器(如SBSRAM、SDRAM、SRAM、ROM、FIFO)提供无缝接口,由于其数据传输速度很快(可以高达900Mbyte/s),所以,可以用来与高速模数转换器接口。EMIF是外部存储器和C6211片内其它单元的接口,具有很强的接口能力。其数据总线宽度为32bits,寻址空间为4GB,可以与目前几乎所有类型的存储器直接接口。EMIF处理的外总线请求有片内EDMAExtended Di
rect Mernory Access控制器和外部共享存储器的设备。对EMIF的控制是通过设置EMIF中的一组存储器映射寄存器完成的,包括配置各个空间上的存储器类型,设置相应的接口时序等。当EMIF与异步器件接口时,整个异步接口信号包括#AOE、#AWE、#ARE、ARDY四个控制信号。在时序控制上,通过在EMIF全局控制寄存器和相应的CEx(x是0~3)空间控制寄存器中进行灵活的参数配置,完成与不同器件的时序接口。有关控制位如图4所示。
4.4 AD6644与C6211 DSK硬件接口设计
因为TMS320C6211 DSK与外设之间没有专门的高速接口,它只有一个用于扩展外部存储器的外部存储器接口(EMIF),所以,只能通过充分利用EMIF的扩展功能,在AD6644与EMIF之间建立一个接口,实现数据的高速传输。接口采用异步先进先出存储器(FIFO)形式。这是因为AD6644的对外数据输出和相应接口是一种主(Master)的形式,它的输出控制信号只有数据准备(Ready)一个,运用FIFO可以大大减少接口控制逻辑的复杂性。另外,FIFO可以向EDMA发出中断信号,因而实现数据传输触发的多样性。图5为异步FIFO接口框图。
4.5 AD6644与C6211 DSK软件接口设计
AD6644与C6211 DSK软件接口程序完成数据从异步FIFO向内部存储器的传输。当主程序发出数据传输命令及FIFO向CPU发出中断请求时,该程序被调用。图6为软件接口流程图。
接口软件在CCS集成环境下,用TIC6x C语言编写而成。实际完成的AD6644与C6211 DSK接口能实现AD6644与C6211DSK之间30M~50M words/s的数据传递,这是由C6211的主频所决定的。事实上,由于C6000系列DSP外部接口的兼容性,可以使用更高主频的DSP如300MHz,方便地实现系统的升级。
在以往的信号处理中,我们直接用工控机处理采集下来的数据,在对数据进行处理分析的时候发现当信号环境复杂,信号密度很大时,工控机处理起来很吃力,性能指标往往达不到我们的要求。为了减轻在信号分选识别过程中PC机处理的负担,进一步提高处理信号的适时性,本方案将信号的预处理部分从中分离出来,交给数字信号处理器专门进行处理,并将处理后的信号传送给PC机进行分析,从而大大地减轻了PC机的工作量,让PC机有更多的时间进行其他细微特征的分析。TMS320C6211 DSK的EMIF接口可以实现数据的高速传输,可以满足系统的要求。
5 结束语
今后,DSP将进一步向着低价格、高集成、高速、高性能的方向发展。伴随着DSP器件的广泛应用,其相应的开发工具也得到了迅速的发展,各种形式的DSP开发工具不断涌现。使用DSP开发工具,不仅可以提高程序设计的效率,而且可以使有较少经验甚至没有经验的人使用DSP。DSK以其高性能、低价格,为我们学习、理解、应用DSP提供了可能。
参考文献
1 王念旭编著.DSP基础与应用系统设计.北京:北京航空航天大学出版社,2001
2 任丽香,马淑芬,李方慧.TMS320C6000系列DSPs的原理与应用.北京:电子工业出版社,2000
3 赵训威.基于TMS320C6200系列DSP芯片的应用与开发.北京:人民邮电出版社,2002
4 郑春龙.DSK的特点及其应用技术.电子技术应用,1998(11)