·上一文章:基于P87C591的 CAN总线超声测距系统设计
·下一文章:基于单片机的音频交换控制系统设计
简便起见,先考虑整周模糊度为常数时的矩阵向量,动态模型采用常速模型。
理想条件下,卡尔曼滤波是线性无偏最小方差估计。在实际应用中,由于滤波的状态估计值可能存在偏移,且估计误差的方差也可能很大,远远超出了按计算公式计算的方差所定出的范围,这在滤波理论中称为滤波的“发散现象”。当滤波发散时,就完全失去了滤波的最优作用,在实际中必须抑制发散现象。
2.2 强跟踪卡尔曼滤波算法
为保证滤波器可靠收敛,考虑通过牺牲一定的精度换取滤波稳定性——例如增大系统的过程噪声和观测噪声的方差阵——这样就将许多未建模的误差包含进去,使算法变得简单可靠。参考文献中提出的强跟踪卡尔曼滤波算法就是依据这种思想,将状态估计误差的协方差阵乘以加权系数λk+1,如式(7)所示。这种方法具有很强的突变状态跟踪能力,并在滤波器达到稳态时保持这种能力,对初值和噪声统计特性的敏感性也比较低。
式(9)和式(10)中的αi值是由先验知识来确定的。可以看出,当状态发生突变时,估计误差Yk+1YTk+1的增大将引起误差方差阵v0(k+1)增大;相应地,加权系数λi(k+1)增大,滤波器的跟踪能力增强,可靠性提高。但是这种方法的缺点是破坏了滤波器的最优条件,使滤波结果产生一定幅度的波动。运用上节的粒子运动模型,通过仿真分析强跟踪卡尔曼滤波算法。在仿真的过程中,突然将系统和观测噪声改变,对比两种算法对噪声改变的适应性。