2 具体模块
本设计基于NiosⅡ硬件平台,运用其强大的扩展及处理功能,将数字图像处理技术、超声波测距定位技术、智能控制技术协调的组合在一起,构成一个既功能强大又非常人性化的“导盲犬”。以下为各模块的设计特点及方法:
2.1 NiosⅡ处理器
NiosⅡ处理器运算速度快,能满足对图像检测与处理的要求;具有完善的软件开发套件,包括编译器、集成开发环境(IDE)、JTAG调试器、实时操作系统(RTOS)和TCP/IP协议栈;其次,Altera DEl的外围接口丰富,可以满足不同的需求,必要时可以自定义外围电路进行扩展。在FPGA中使用软核处理器也是其优势所在,硬核实现没有灵活性,通常无法使用最新的技术。基于标准处理器的方案会被淘汰,而基于NiosⅡ处理器的方案是基于HDL源码构建的,能够修改以满足新的系统需求。将处理器实现为HDL的IP核,开发者能够完全定制CPU和外设,获得恰好满足需求的处理器。
2.2 图像采集模块
利用的地貌比对是对被检测到的环境特征在环境图像库中进行目标搜索以及进行地点的确认。实际上,将采样到的环境图像与库存的图像依次进行比对,并找出最佳的匹配对象。所以,环境的描述决定了环境识别的具体方法与性能。该应用的核心是“图形识别算法”,这种算法是利用了环境中的各主要特点及一些特征部分而形成的方法。
图像采集系统主要由视频信号A/D转换,PFGA控制模块,逻辑控制模块,存储模块等组成。系统采集图像的命令由计算机发出,通过Avalon总线将命令传送至FPGA同步采集模块。同步采集模块则发出采集信号采集一帧图像,利用写信号将数据存储至SRAM1中。经过边缘检测处理后存储到SRAM2中,将图像信息读出传送给FPGA至处理。对比FPGA中环境图片的数据库的数据与当前图像数据,对数字信息进行分析,在合理误差范围之内,可确定特定的位置,达到环境识别的目的。
2.3 超声波测距模块
利用超声波测距模块可实现多障碍物的定位及运动状态的跟踪,可以精确地测出物体距离盲人的距离、物体相对于盲人的运动方向及运动速度。由于超声波测距误差是由超声波的传播速度误差和测量距离传播的时间误差引起的。而超声波的传播速度的误差影响最大,且其与环境的温度有关,故本设计中采用了带温度补偿的超声测距,通过高精度的温度传感器实时跟踪外界温度的变换,能很好地补偿超声波在不同温度的传播速度。而传播时间的误差则通过NiosⅡ来消除,NiosⅡ内部具有高频晶振信号,通过其内部计数器计数可以满足超声波测距的微秒级要求,能保证测距1 cm的误差。
2.4 电机控制模块
本设计中用到的电机为直流电机,控制着导盲仪的运动,以及超声波传感器的循环扫描和摄像头的动态摄取,运用工程整定方法,通过试验,然后按照工程经验公式对控制器参数进行整定,由控制器输出控制各个电机协调运动,可以实现导盲仪的自动运动及多个超声波测量仪的平面覆盖式扫描,消除扫描中的死角。测速电路用于测量导盲小车的速度,反馈电路输出控制调速系统可控制预先设定的速度。
2.5 短信息发送功能
能够将盲人遇到的情况的描述自动发送给其家人。短信息的发送需要GSM模块和FPGA处理器共同协作完成。发送中文短信采用PDU模式Unicode编码方式,将所要发送的信息存储在SIM卡中。发送过程中,FPGA通过发送及接收
AT命令与GSM模块形成回路,通过
AT命令实现对GSM模块的操作。通过简单的按键分配各个对应的信息内容,能够使不同的信息通过短信息模块发送。
3 结 语
本设计基于FPGA技术在Altera公司的DEl开发平台进行开发,设计中需要大量进行实时图像处理,波形处理,以及多个进程的并行处理,对处理器的性能要求比较高,而基于Altera NiosⅡ可以很好地满足算法的速度和精度的双重要求。同时丰富的IP盒可供直接使用,方便高效。在设计构架过程中,需要将Avalon总线上各个IP的时序进行综合,方便FPGA处理器进行处理,避免错误和损失。同时,如何提高导盲系统的鲁棒性也是一个值得解决的有意义的工作。