图2 M×N的虚拟处理元阵列
(3)仿生的物理实现技术
对宇宙和大脑奥秘的渴望,激发了人类的太空之旅与人体之旅,使嵌入式计算技术从传统计算模式,发展到自主计算模式,走向了自然计算模式。传统计算的芯片实现技术现在已从单功能芯片发展到多功能的SoC芯片的新阶段,软件实现技术已从结构化程序设计,到面向Object的程序设计,到基于 Component的程序设计以及到基于Agent的程序设计。
1956 年8月,约翰.
麦卡锡首次提出了人工智能(AI,Artificial Intelligence)的概念,当时他说:“机器会思想的时代不要20年就会到来”,但现在人工智能还处于初级阶段,只在“认知科学”和专家系统方面取得了成功,这说明了人工智能的艰难。人们估计从200X年到201X年将会步入 30nm的纳电子时代,机器人的自主移动操作、重力行走与气流发音,以及鱼眼镜头的拍摄等自主计算的仿生实现技术将会更加完善。自主计算的仿生实现技术目前主要是从利用模糊逻辑的推理能力、神经元网络的学习能力与基因计算的优化能力等方面展开研究工作的,而真正的挑战在于改变与重新定义计算硬件的性质。
在许多方面,人体是一种最有效的计算机,人体中的神经系统是由于纳(Na Sodium)离子与钾(K,Potassium)离子的运动,在大脑与遍布人体的神经中心之间传递信号,并由大脑解释与处理,从而支配人体活动的。人们估计从201X年到20XX年将会步入10nm的纳电子时代,促进量子计算的自组装技术,化学计算的DNA技术以及容错计算的神经元技术等自然计算的仿生实现技术的发展。特别是分子自组装技术,已经取得了实验室芯片 (ALM)等实用化的成果。
结束语
综上所述,我们从功能上提出了一种统一的体系结构模型,从结构上将设计一种能够有效支持虚拟并行计算程序设计的处理元阵列,从物理实现上将研究一种能支持自组装技术的设计平台。总之,SoC芯片、纳米制造与自主装技术等,将会进一步促进航天时代的嵌入式图像处理技术的发展。