摘要: 给出了用C8051FF330D的内部电流型D/A转换器和电流/电压转换电路来输出0~4V的模拟信号量, 用于控制恒流源输出电流, 并使其按设定的值进行变化, 从而完成可编程恒流源控制器的设计方法。利用该方法设计的程控恒流源具有电流纹波小、控制精度高和运行稳定等特点。
0 引言
在飞速发展的电子和电信技术系统中, 电源的优劣在一定程度上决定着电信设备的性能和寿命。因此, 人们对程控恒流器件的需求也日益迫切。虽然目前市场上的数控恒压技术已经比较成熟, 数控电压源产品也已朝着智能化和小型化的趋势发展, 且价格也越来越便宜。但是, 在恒流源方面, 尤其是数字控制的恒流技术则由于起步较晚, 高性能的数控恒流器件的开发和应用存在着巨大的发展空间。为此, 本文以C8051FF330D单片机为控制核心, 并利用C8051FF330D的I2C串行总线扩展外围器件, 同时以模块化设计方法,设计了一种程控恒流源。而且整个电源还具有功耗低、体积小, 电流纹波小、控制精度高和运行稳定等特点。
1 系统总体结构
该程控恒流源设计主要采用C8051FF330D单片机内部的10位电流型数模转换器和电流/电压转换电路来输出0~4 V的模拟量, 然后用这个电压信号来控制恒流源的输出电流, 以使其按照给定值变化。由于本系统扩展了I2C串行总线接口,以及以ZLG7290为核心的键盘和LED数码管显示器电路, 因而可用键盘进行电流值和时间间隔的设定, 其电流值设定范围为0~10 A, 时间间隔为0~10小时。另外, 系统还具有掉电保护功能, 故当其恢复用电后, 可使电流源从断点处恢复运行。
图1所示是本系统的硬件组成结构。其中,时钟电路采用外部晶体振荡器来提高时钟精度,JTAG接口电路则为系统提供全速、非侵入式的在线系统调试接口, 而外部复位电路可用于强制MCU进入复位状态。
图1 系统硬件组成结构图
2 硬件电路设计
2.1 模拟量输出接口电路
C8051F330D内部有一个10位电流型的D/A转换器IDA0, 它的最大输出电流具有0.5 mA、1 mA和2 mA三种不同的设置。同时, IDA0还具有灵活的输出更新机制, 并允许无缝满度变化, 可支持无抖动波形更新。IDA0的三种更新方式分别为写IDA0H、定时器溢出和外部引脚边沿出发。本设计采用P1.0输出, 并采用定时器溢出的更新方式。
C8051F330D内部电路中的数模转换器输出的0~1 mA电流信号通过基准电阻转换为0~2 V的电压信号后, 再经过放大电路转换为0~4 V的标准信号输出。其模拟量输出信号转换电路如图2所示。
图2 模拟量输出信号转换电路