1 引 言
发射光谱层析(EST)技术是一种不干扰原待测场分布的测量诊断技术,他在热物理量测试、等离子体诊断等方面显示出了极大的优越性,尤其是在场分布测量方面,几乎是其他方法不可替代的,是测量三维流场内部物理量分布的一种常用方法。
传统的层析重建技术,通常是利用软件编程在计算机上直接完成,这要花费很长的时间,无法满足实时重建时对速度的要求,现在已有研究者开始着手研究在硬件(例如FPGA和DSP)上来实现层析重建技术,例如:在FPGA上实现ART算法。但是,由于ART算法在重建图像时对噪声的抑制能力较差,迭代格式复杂,且有除法运算,用FPGA实现起来较为复杂。同时迭代重建算法--SIRT能够有效抑制测量误差的影响,迭代格式简单,得到广泛应用,但该法用FPGA(现场可编程逻辑门阵列)来实现时,牵涉到小数运算问题。因为在FPGA中数据都是以二进制形式参与存储、运算的,小数计算问题是FPGA应用中的一大难点,目前业界用FPGA来处理小数大都采用定点处理,这种方法行之有效,但应用范围很有限,对于在层析重建中的小数,采用定点运算是无法处理的。
本文提出一种处理小数的方法,即把将要参与运算的数据转化为IEEE标准754的二进制单精度浮点数,然后调用Altera开放的浮点数运算IP核对数据进行运算,Altera提供的IP核是Altera公司经过严格测试和优化过的电路功能模块,在设计项目时调用IP核既减少了设计中的工作量,又在一定程度上节省了芯片资源,为迭代层析实时重建提供了可能。SIRT算法较ART算法迭代格式简单,且更易减小重建误差,提高重建速度,更适用于实时重建。FPGA在设计时采用Verilog编程和调用Altera的开放IP核相结合的方法来实现,软件设计和综合模拟仿真在QuartusⅡ5.1开发平台中完成,最后给出了一些模块仿真的波形。
2 SIRT算法
SIRT算法的迭代格式为:
4小数的预处理
IP核来计算数据时,输入数据和输出数据都应为IEEE标准754的二进制单精度浮点数,这样就要求在进行浮点数运算之前,先要对数据进行处理使测量值P和投影矩阵W的值转化为IEEE标准的二进制浮点数。
预处理步骤如下:
(1)对于测量数据P,他是由CCD采集并经10位A/D转换,使测量数据转换为10位二进制整数,然后经过数据预处理模块,把数据处理转化为IEEE标准754的二进制单精度浮点数,输入到外部寄存器P等待调用。
(2)对于投影矩阵W,如果图像大小一定,则投影矩阵W也是固定的,可先由Matlab仿真生成并处理转化为IEEE标准754的二进制单精度浮点数,然后存到W寄存器,等待调用。
在此只讨论由FPGA处理的部分,即只讨论对测量数据P的预处理,而对于W矩阵的值则可由Matlab编程处理完成,在此不再赘述。
流程图如图2所示。
5.1预处理P的模块
测量数据P为二进制整数,将其转化为IEEE标准754形式,只需要先对数据进行检测,若数据为正则符号位S=0,否则S=1;然后找出为"1"的最高位,设为"1"的最高位为第L位,则保留P[L-1:0]作为IEEE标准754的尾数M的高位,然后在其后补"0"至23位,即得尾数M;而L的值即为指数e,则E=e+127。假设P[9:0]=0001011011,则为"1"的最高位为P[6],保留P[5:0]作为尾数M[22:0]的高位,然后在后面补"0",即得尾数M,在此M=01101100000000000000000,而指数e为6,则E[7:0]的大小为E=e+127,在此即为133,即为二进制的10000101,此处为S=0,则P转化后的值为Pout[31:0]=01000010101101100000000000000000,仿真结果如图3所示。
显然仿真结果是正确的。
按照IEEE标准754形式,把测量所得数据P和投影矩阵W的值预处理转化为IEEE标准754形式以后,即可进行运算。
5.3 浮点乘法器的实现
两浮点数相乘,设两数均为01000000011000000000000000000000,即为十进制的3.5,调用浮点数乘法IP核,进行仿真。仿真结果如图5所示。
由仿真波形图可见两数相乘结果为01000001010001000000000000000000,为十进制数的12.25,即结果是正确的。