雷达I、Q通道回波信号输入采样系统后,先经过运放AD8138变为采样芯片AD9481需要的差分输入信号,220MHz的采样时钟经过2分频后分别输入两个AD9481,AD9481对输入信号进行AD变换后,即以110MHz时钟分两路输出相反的时钟信号,并在CPLD控制下经过锁存写入两路FIFO。由于每路输出数据是8bit,因此,对于I、Q通道的采样数据在其从FIFO输出后应经过CPLD将两路数据合并成16bit,然后再通过CPCI总线的J4接口输入到雷达信号处理系统,同时通过S5933输入到PCI总线,其中向PCI总线的传输主要是为了调试过程中的数据控制。
双通道高速采样同步时序控制设计
图2所示是AD9481的工作时序,从图中可以看出,其DCO时钟是互相反相的,DCO-时钟对应的数据输出通道是A通道,DCO+时钟对应的通道是B通道,对于采集时钟信号来说,B通道的数据要比A通道的数据晚一个周期,而对于输出的DCO时钟来说,B通道的数据要比A通道晚半个周期。由于数据是交叉式输出的,其顺序不会改变,因此,对于双通道数字采样的同步问题,可以由后端不同通道的FIFO缓存来实现数据的排序。
本系统中的两个AD9481分4个通道输出数据,为了配合CPLD控制FIFO来实现输出数据的同步,输出的8bit数据应先经过锁存器74LVT574,然后进入各自通道的FIFO来实现存储,AD9481的输出时钟DCO可经过异或门74VCX86加到各自通道的FIFO上,其连接结构如图3所示。
对于每一路采样系统,将DCO-和CPLD输出的锁存有效信号相异或,便可得到输出A通道锁存74LVT574的输入时钟,而将DCO+和CPLD输出的锁存有效信号相异或,就可以得到输出B通道锁存74LVT574的输入时钟,将DCO-和CPLD输出的FIFO有效信号相异或,即可得到输出A通道FIFO的写入时钟,DCO+和CPLD输出的FIFO有效信号相异或,就会得到输出B通道FIFO的写入时钟,采用这样的设计,只需更改CPLD输出的有效信号就可以控制每一路时钟和数据的传输状态,并可充分利用CPLD便于更改程序的优势来控制两路采集的同步,从而方便设计过程中的调试。
整个双通道数字采样的逻辑控制可由一片Altera公司生产的MAX3000系列CPLD完成,其型号为EPM3256-10,速度为10ns。
事实上,系统的逻辑控制主要用于完成以下功能:
◆ 完成S5933的启动及配置;
◆ 通过控制AD9481的DS信号,来实现对采集过程的控制;
◆ 通过控制4个通道中的锁存和异或门,来实现对采集过程中单通道内部和双通道数据之间的同步控制;
◆ 通过控制FIFO的写使能和写时钟,实现对FIFO状态及传输数据的控制;
◆ 在4个FIFO的输出端完成双通道中8bit数据合成16bit数据的工作;
◆ 在4个FIFO的输出端,通过对FIFO读时钟和读使能的控制,来在I、Q各自通道内完成A、B端口FIFO数据的交叉读取,并保证输出数据的正确顺序;
◆ 完成合成16bit数据向J4接口或CPCI总线的传输;
◆ 由雷达接收机发出4KHz的推移信号,按期对AD9481进行使能并清空4个FIFO;
CPLD的控制逻辑可由状态机实现,其逻辑结构如图4、图5和图6所示。
在AD控制的逻辑状态机中,rday、ddav通过使能可产生rclk和dclk信号,rclk和dclk两个信号均为20MHz,相差为360度,且通过使能产生的FIFO使能信号,为低电平有效,保持时间为50ns五,也就是频率为20MHz的信号,A口FIFO与B口FIFO的读使能信号完全反相,但读时钟相同,实际上,dclk比rclk晚一个周期。
在数字采样的FIFO传输时,为了后端信号处理得方便,可在每帧数据上附加帧头:“0x90EB EB90”,这样可以明确表明帧的起始位置,防止错误数据影响后端信号的处理流程,这些信号的脉宽、分频、计数命令和状态、时延命令都是16bit的,均可在两个时钟周期内传输完毕,并可用于表明数据传输和雷达工作的状态。
结束语
在系统设计完成后,可首先采用正弦曲线拟合法对ADC的动态性能进行测试,笔者的测试结果和理想的正弦曲线相比,其误差在较大点数的采样后趋于平稳,误差为10-4V级别,可以认为,采集系统的精度是很高的。此后,笔者又采用FFT方法对ADC系统的频域性能进行了测试,测试结果表明,双通道数字采样系统具有较好的信噪比和有效位数,此外,在双通道数字采样的测试中笔者还对雷达的发射波形进行了采样,雷达发射波频率从100MHz逐渐降低到0MHz,然后从0MHz再上升到100MHz,采样结果表明,本系统的数字采样具有良好的采样性能。