2 通用通信信号发生器
通用通信信号发生器通过软件定义调制信号的调制样式和调制参数,经软件运算产生相应的数据,由这些数据通过硬件电路产生具体的调制波形。信号发生器的“通用性”为:系统结构的通用性,硬件系统的通用性和软件模块的通
用性。图l为信号发生器的原理框图。
话音、图像、传真、数据等基带信号在计算机中经软件编程进行适当转换,生成相对一致的数据格式,并在控制信号的作用下发送至计算机端口。计算机端口外接信号发生及中频调制硬件模块,处理计算机端口发送的数据,生成中频信号。中频模拟信号再经中频放大,混频及高频放大,用射频调制信号发送。这种射频调制信号包含基带的话音、图像、传真、数据等信息,即为通信信号。
系统硬件设计为生成所需调制信号,同时也要避免大量的电路堆积,应用“软件无线电”的设计思想,直接对包含载频信息的数据进行D/A转换,转换为已调信号。但是,对于包含载频信息的已调信号来说,根据采样定理,如果要有效生成已调信号,则要求计算机总线接口的传输速率相当大,需要较高的硬件性能,且控制复杂。
3 正交调制法的应用
理想情况下,运用“软件无线电”的思想,计算机通过运算产生任意通信信号的采样值,通过D/A转换后生成所需的任意调制通信信号。但在通信信号带宽较宽的情况下,直接产生射频信号所需数据量巨大,这是普通计算机的主频、总线传输速度与外设接口的数据传输速率所不能承担的,而且大量高速的数据传输和控制也增加了相应控制电路设计成本和难度,因此“软件无线电“方法在现实中不可取。大量数据的来源是对载频信号的采样量。而基带信号本身的采样量远远小于载频信号采样量,因此计算机能够实时处理。把表征基带信号的一些特征通过软件运算生成采样值,通过D/A转换与载频结合就可产生所需的已调通信信号,这样就可避免由于对载频信号采样而产生大量数据以及相应的复杂控制。为此,可采用正交调制法。
将正交调制法运用于通用通信信号发生器的中频调制模块,设计框图如图2所示。
图中,计算机通过软件计算生成表征基带信号的I、O串行数据。由双通道发送D/A转换器分离以后的I、Q分别转换成模拟信号,I、Q模拟信号经正交调制器与本地振荡器正交相乘生成射频(中间)信号,再经下变频生成所需窄带通信信号。系统中,双通道发送D/A转换选用10位,40 MS/s的双通道发射AlD9761。
4 AD8346在通信信号发生器中的应用
AD8346用于0.8~2.5 GHz的射频正交调制,可广泛应用于数字扩频通信系统、蜂窝传输系统、无线局域网络、OPSK、GMSK、QAM、SSB调制器、频率同步等领域。
4.1 AD8346简介
AD8346可调制的基带信号带宽为直流到70 MHz。单端2.7~5.5 V供电,静态工作状态下电流值为45 mA,休眠状态下电流仅为lμA。该器件具有较高精度,在1.9 GHz时,正交均方误差仅为l°,I/Q幅度平衡仅为0.2 dB。其优秀的相位精度和幅度平衡特性使其可直接将信号调制到射频。
从电路功能考虑,AD8346可分为本振接口、混频器、电压到电流转换器、差分到单端转换器和偏置电路等部分,其内部功能构成如图3所示。
其中,本地振荡接口部分通常接收来自LOIN、LOIP输入端的外接差分输入,也可由单端驱动。本地振荡接口部分包括分相器和缓冲放大器。其中,分相器由电阻和电容回路构成,将输入的L0本振信号分为精确正交的I、Q两路振荡信号,驱动两个正交的混频器。每个通路的信号通过缓冲放大器补偿信号的幅频衰落并分别通过一个单相网络增强正交精确度。在正交混频器中,一路振荡信号和由IBBP、IBBN馈入的I通道信号相乘,另一路相差90°的振荡信号和由QBBP、QBBN馈入的Q通道信号相乘。两个正交混频器的输出则通过差分一单转换器输出阻抗50 Ω。IBBP、IBBN、QBBP、QBBN的输入则经电压至电流转换器,将基带的电压信号转换成电流,然后送入混频器。
4.2 AD8346在中频调制模块中的应用
根据图2的中频调制模块结构图,在通用通信信号发生器中频调制模块中,双通道D/A转换器与正交调制器共同生成射频信号。在设计中,正交调制器AD8346与双通道D/A转换器AD976l相配合能满足正交调制的设计需求。