·上一文章:电力线载波通信EMI滤波电路研究
·下一文章:国内VoIP网络电话发展演变趣谈
其中,f_mid为调制信号的中心频率,fm_frerom为A/D输入的信号幅度值与频偏之间的映射关系,系统根据接收到信号的幅度值相应改变调制信号的频偏从而完成调制功能。
4 系统软件仿真及测试
4.1 软件仿真
本设计利用EDA工具QuartusⅡ6.O完成调制器软件编程,通过编译环境进行软件仿真如图4所示,其中clk为系统晶振时钟,addr40为相位累加器,a_in为A/D的转换器的8位输出信号,fword为系统频率字,fout为波表输出的调制信号幅度值。
4.2 系统测试与分析
系统测试通过IFR2399A频谱仪来完成系统的硬件测试。图5表示在相同的硬件平台上实现MSK调制的频谱图,图6表示GMSK调制的频谱图。对比两个图可以发现,由于加入了高斯滤波器,GMSK的频谱更加紧凑,带外衰减也要快于MSK。同时由测试结果可以看出,中频载波为200 kHz,主瓣宽度以及衰减状况等与理论分析结果相符。
5 结 语
本文实现了一种基于CMX589A和FPGA的GMSK调制器。系统采用了主从式的结构,主控机由单片机实现对于GMSK调制器系统参数的控制,CMX589A模块完成基带信号高斯滤波,FM调制器采用直接数字频率合成技术(DDS)在FPGA硬件平台上实现、系统最高输出频率为25 MHz。同时系统具有很宽的基带信号数据和调制参数灵活可控等特点,并且克服了正交调制方案中严格正交载波产生困难的缺陷。测试结果表明,已调信号包络恒定,频谱满足设计要求,适用于CDPD,无中心站等多种通信系统。