其中:n1,n2分别是接收端收到的噪声和干扰;h1,h2为信道增益系数。
3.2 极大似然译码
极大似然译码是最佳的矢量译码方法。假定所有的未编码符号是等概率发射的,接收端已知信道状态信息,则极大似然算法选择使下式成立的矢量c作为对c的近似,即:
其中:arg min表示使函数达到最小值时的变量取值;||·||代表Frobenius范数;C表示c的所有可能取值的集合。
ML检测就是在范数意义上从星座中寻找与接收信号最接近的矢量作为发射信号的估计值,虽然ML是一种最优的检测方法,但是ML检测的复杂度相当大(随发射天线数目呈指数增长)。
4 仿真结果和译码复杂度分析
为验证本文提出的传输方法,采用Matlab仿真软件对算法进行了仿真,并比较了结果。
4.1 仿真结果
图2给出发射天线数为2;接收天线数也为2时,已有的典型传输方法与本文提出的传输方法的误码率曲线。图中所有的编码均采用了QPSK调制,并假设接收端有理想的信道估计并采用了传统的最大似然译码方法。
4.2 译码复杂度分析
观察式(4)可发现,只需进行简单的线性处理即可检测出s0和s1。对式(3)采用最大似然准则进行译码时,与本文的改进方法相比,译码速度相当慢。在2发2收系统情况下,调制方式分别采用2PKSK,4PSK,8PSK和16QAM,对两种传输方法的复杂度进行了比较,结果如表1所示。
从表1可看出,本文提出的传输方法与传统的传输方法相比较,计算量明显下降。调制方式分别采用2PSK,4PSK,8PSK和16QAM时,传统传输方法的计算量是本文提出的传输方法的2倍、4倍、8倍和16倍。
5 结 语
根据频率分集技术的特点,提出了一种新的传输方法。在该方法中,随着发射天线数目的增加,频谱利用率会降低,性能有所下降,但会加快接收端的译码速度。