首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
基于盲源分离的同道数字通信干扰抑制
来源:本站整理  作者:佚名  2009-06-16 09:52:14



1 引言
   
盲源分离可以在对信源知之甚少的情况下,分离出想要的信号。它已成功地应用于生物医学信号处理(如心电图、肌电图、脑电图及脑磁图等)、语音增强、图像增强、数字通信中同频干扰抑制、机械故障检测、雷达信号处理等方面。
    在军事通信对抗中,如何摆脱敌方同频干扰的影响以保证我方通信正常是重要的研究课题。已有文献研究了利用肓源分离将频域重合的信号分离这一问题,如文献[3]采用3天线阵列接收,利用盲源分离实现3路同频PAM信号的分离,文献[4]采用相干解调方式实现了多路BPSK信号的分离。这里研究了数字通信的干扰抑制问题,理论分析和计算机仿真表明采用盲源分离的方法可有效抑制同道干扰。

2 盲源分离的数学模型
    盲源分离中的“盲”是指当传输信道的特性未知时,从接收信号的阵列中估计出源信号的波形。当然,在缺乏先验知识的情况下,不可能唯一确定源信号,导致所恢复的信号存在一定的模糊性:排序的模糊性和幅度比例伸缩,但所恢复的信号依然保留源信号的波形信息。在一定程度上,这并不影响对信号的理解和处理。
    盲源分离的基本模型:假设有n个信源,通过线性混合后,由n个探测器(传感器)接收,整个系统用矩阵表示为:
   
式中:S为未知的n个源信号,A为n×n的混合矩阵,n为噪声,X为传感器接收的信号。
    一般情况下,假设源信号与观测信号维数相同。在噪声不存在或可忽略不计的情况下,这时盲源分离的模型如下:
   
    盲源分离的目标是在一定准则下,寻找矩阵A的逆矩阵的估值A-1,得到对信源S的估计如下:

   
    如果A-1A=I,则Y=S,实现了对源信号的估计。一般情形下,假设源信号统计独立。因此盲源分离问题有时也称独立变量分析(Independent Component Analysis)。


3 数字通信的同道干扰
   
数字通信是目前无线通信所采用的主要通信方式,其主要调制方式有幅移键控、相移键控和频移键控。
    幅移键控信号表示为:

   
    式中:Am表示M个可能的幅度。
    相移键控信号表示为:

   
    相移键控发送的载波有M个可能的相位。频移键控信号表示为:

   
    当数字通信的载波频率相同时,通信收发信机之间会产生同道干扰。由于不同发信机之间所发送的信号是独立的,所以可采用盲源分离算法将分离不同发信机所发射的信号。

4 FastICA算法
    Hyvarinen等人提出了基于峭度和负熵固定点算法,这一算法具有极快的收敛速度,因此称为:FastICA。FastICA算法属于批处理算法,但其具有相当快的收敛速度,是盲源分离算法中较成功的算法。FastICA算法将非高斯极大化算法和定点迭代相结合,具有三阶收敛速度。衡量非高斯的目标函数有两种:峭度和负熵。因此,FastICA有两种形式:基于峭度最大化和负熵最大化的FastICA算法。下面分别推导基于两种代价函数的FastICA算法。
    关于标准峭度的梯度函数:

   
式中:β是输出信号峭度的符号。
    当对混合信号白化后,信号的能量归一化,所以||W||2=1。这样,每次迭代后可将分离向量W归一化。当盲源分离算法到达平衡点时:

   
    由此得到两步迭代快速算法:

   

[1] [2]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:4,613.28100 毫秒