图1 上变频器总体框图
上变频器的输入信号为I/Q两路,与单路混频上变频相比可以更好地抑制载波和一个边带。为了使射频输出能够进行精确的功率控制,信号滤波后使用AGC电路去除器件噪声和输入信号不稳的影响,结合多级数控衰减器和固定衰减器输出组成的衰减网络,达到功率控制的目的。本振模块采用可编程的PLL电路,使设计可以应用于L波段多个频点上变频器的本振信号产生。写频控制信号和衰减控制信号由上级电路给出,用于上变频器控制相应的模块。
3 主要模块的分析和设计
3.1 IQ调制电路分析和设计
假设两路中频信号分别为i(t)、q(t),正交的载波分别为si、sq,输出信号为S,则有:
其中,i(t)=cosωCt ,q(t)=sinωCt ,si=cosωLt ,sq=sinωLt
由此可见当两路信号正交时,载波和一个边带被完全抑制,这就减少了对射频滤波器的要求。如果两路信号不正交,令i(t)=Acos(ωCt+φ)+B ,其中A表示信道增益不平衡,φ表示相位不平衡,B表示直流偏差,则:
此时,输出信号不能完全抑制载波和一个边带,且会对需要的边带产生影响。为了减少IQ正交性对输出信号性能的影响,上变频器的IQ两信道要对称,并且提供相同的直流驱动来提高IQ调制电路的载波和边带抑制能力。
3.2 PLL电路设计
PLL电路产生本振信号。PLL是一种相位反馈控制系统,它能使压控振荡器的频率和相位均与输入信号保持确定关系,并且使输入信号中存在的噪声及压控振荡器自身的相位噪声得到一定的抑制,PLL电路原理如图2所示:
图2 锁相环电路原理框图
设计中可以使用内部集成鉴相器和分频器的可编程频率合成器,与外部环路滤波器和VCO构成完整的PLL。由于产生的本振频点的可编程性,使电路的设计对不同频点信号具有通用性,可以适应不同系统的要求。
在使用集成频率合成器和VCO的PLL电路设计中环路滤波器的设计是关键,其作用是抑制鉴相器输出电压中的载频分量和高频噪声,降低由VCO控制电压的不纯而引起的寄存器输出,对输出的本振信号频率稳定度有很大的影响。
3.3 AGC电路设计
AGC电路是一种在输入信号幅度变化很大的情况下使输出信号幅度在较小范围内变化的自动控制电路。常用的反馈型AGC原理和线性模型如图3~4所示。
图3 AGC原理框图
图4 AGC控制环路模型
在上变频器中,为了抑制器件温漂、输入变化以及其他干扰从而实现对射频输出功率的精确控制,需要使用AGC电路稳定调制器输出信号的功率。
3.4 阻抗匹配和屏蔽
为了保证信号传输效率,PCB 板要充分考虑阻抗匹配的问题,主要包括各个模块之间以及信号线的匹配。以三端连接时50Ω阻抗匹配为例,每端串联16或18欧姆电阻,则每端看入的阻抗均为:(16/18+50)/2+16/18≈50(Ω)。
射频电路的每个部分均封装在金属盒的分腔中,减少前后级射频辐射的相互影响,尤其对于多级衰减电路,屏蔽的作用尤为重要。同时在PCB电路板布线时,要充分考虑射频辐射的影响。
3.5 软件设计
控制信号接口的微控制器的软件主要功能是接收和解析上级电路的写频控制信号和功率控制控制信号,使用I2C总线传输,协议简单且两条传输线占用空间少,软件流程如图5所示。
图5 软件流程图