以Freescale公司的ZigBee射频芯片2.4 GHz的MC13192为例,其物理信道支持完全符合图1,通信时可以指定工作在一个信道上。在此特别指出,MC13192片内集成的CCA(空闲信道评估)模块可以根据接收到的基带信号的能量进行空闲信道评估检测。简单应用时可以直接调用Freescale公司提供的SMAC中的MLMEEner- gyDetect()原语,此函数的工作机理是在128μs内对信道进行能量积分和门限判别。通过调用MLMEEnergyDe-tect()可以检测到信道的信号能量。此外,SMAC中还有MLMELinkQuality()原语,该原语为评估链路质量所用。
可见,ZigBee芯片的CCA模块为认知无线电在其上的应用提供了基本的硬件条件。同时,尽管目前的ZigBee规范中信道分配是静态的,即网络不会自动在信道变坏时重置新的信道,但是应用开发商完全可以在应用时自行决定将网络迁移到一个新信道的条件,并开发相应的应用方案,从而实现信道的实时重构。当然,这时认知无线电对频谱的感知、判决分配、实时重构都仅限于芯片支持的信道频率范围内,例如MC13192的无线工作频率是2.405~2.480 GHz。
2.2 认知无线电在ZigBee技术上的实现
实现Ad-hoc网络的方式有很多,应用于无线传感器网络可以使用 ZigBee技术,这也使得认知无线电思想在无线传感器网络中的应用成为可能。虽然ZigBee芯片对频谱的认知水平并不高,仅限于能量检测和功率控制,但这对于简单应用而言已经足够而且相当有效。本文利用ZigBee射频芯片支持多信道选择的特点,采用同级多频多跳的组网方式组建无线传感器网络。在编写应用程序时,各节点结合自身在传感器网络中实现的不同功能,实现不同方式的信道的最优选择。在这种方式的无线传感器网络的具体设计过程中,可结合具体的外部环境给出最有效的解决方案,利用一切可用的机会进行通信。下面结合Freescale公司的ZigBee射频芯片MC13192给出这种认知无线电思想在ZigBee技术的实现。如图2所示,无线传感器网络中的硬件节点通常由单片机MCU部分和射频部分、传感器部分共同组成。采用该节点,一个最简单的多频多跳应用传感器网络如图3所示。