(3)实验结果分析
①LCD模块中主要包括控制芯片和LCM(显示器)。理论值中,LCD(S6B0741)的电流理论值并不包括LCM(显示器)所消耗的电流。当LCD开启,ATmega324p在Idle模式和正常工作模式时,理论值和实际测量值之间都大约相差3 mA。可以得出,3 mA的电流就是LCM(显示器)大约消耗的电流。
②实际测量的电流值比理论值要大,这样的能耗差异主要是消耗在便携式控制器模块中外围电路上。外围电路中各个电子元器件的理论消耗电流值很难查到,在计算的时候没有加入。
③虽然测量的方法很简单,测量的只是系统电流的静态值,但是这个测量的电流值可以大体上反映出系统在不同的工作状态下的功耗趋势,对系统的低功耗研究有一定的意义和应用价值。
④在各种工作模式下的实际测试结果对比中可以看出,最小系统的最小能耗和最大能耗之间相差大约10 mA。所以,在低功耗设计中,不同功能要求下不同工作模式的转换是非常有意义的。
⑤LCD模块的背光打开和背光关闭消耗的电流差值在6 mA左右,可见LCD的背光在系统中是耗能很大的器件。所以,从节约能耗的角度考虑,一般正常情况下不开启LCD背光。
2.2 便携式控制器低功耗测试实验
为了验证便携式控制器的耗电性能,在采取了上述软硬件低功耗措施后,对便携式模块的功耗性能做了下述实验。验证结果表明,所设计的模块在功耗方面基本满足了系统的应用要求。
(1)实验内容
①用ATmega324.p的定时器2进行定时收发,每隔2.5小时发送接收1次数据,1天发送9次数据。
②在没有发送接收任务的时段,ATmega324p处于低功耗的睡眠状态Power-save,关闭LCD模块,IA4421工作在睡眠模式。从上面的小系统功耗实验中看出,这样的工作状态下整个便携式模块的耗能最低。测试的软件流程如图2所示。
③IA4421的无线通信参数为:工作频段433 MHz,数据传输率9.6 kbps,相对发射功率0 dBm,接收灵敏度-109 dBm。这样的参数选择,在满足系统收发功能正常的情况下,尽量地使用低频段、低传输率,为了满足较远距离传输并尽量地降低发送接收的功耗。
④用3节7号的南孚碱性高能电池供电,测试开始时电池电压为4.86 V。
(2)实验结果与意义
测试系统是针对便携式控制器与主机之间的点对点通信设计的。实验结果如表4所列。
每2.5小时进行1次通信,这个通信频率对用户使用本系统的频率进行了较好的模拟。实验结果可以看出,电池的寿命大概在5个半月,并且是在每天通信10次的基础上测试得到的结果。这个电池寿命的指标基本达到了系统设计的要求,也证明了上述的软硬件措施是得当有效的。
3 结 论
本文详细分析了低功耗的软硬件设计方法,在不同工作任务下选取不同的工作模式对降低功耗具有重要的意义。在使用了得当的软硬件措施后,所设计的便携式控制器模块的电池寿命达到了半年左右,满足了无线传感器网络系统的应用需要。文中的低功耗设计方法和思想对实际产品的开发具有一定的参考价值。