2.2 升压电路的设计
升压电路采用立锜科技的RT9266B 高效率DC-DC 升压芯片,RT9266B 具有功耗低、静态电流小、转换效率高、外围电路简单等特点。芯片内带有自适应的PWM 控制环、误差放大器、比较器等,通过外接反馈电路,能够将输出电压设置为需要的任何幅值,具有很高的电压精度。电路图如图2 所示。
从图2 可知升压电路通过外接10uH 电感储能, 利用反馈电阻R1 与R2 控制升压电路的输出电压, 利用RT9266B 内部自待的PWM 控制器控制NMOS 管的导通与截止, 来控制升压电路的输出电流。由于该芯片内部具有自适应的PWM 控制器,能够适应较大的负载变化范围。
用该升压电路将3.7V 2000mAh 聚合物锂电池升压至5V时,输出电压纹波只有40mV,最大输出电流可达500mA。
3 充电电路
3.1 锂电池充电电路的基本原理
锂电池的充电过程可分为三个阶段:预充电、恒流充电和恒压充电。当锂电池的电压低于最小充电电压,则首先进入预充电阶段,以微小电流(通常取标准电流的10%)给电池充电,直至电池电压达到最小充电电压。此阶段的预充电能够防止锂电池在过放后直接以大电流恒流充电造成的损坏。当电池电压高于最小充电电压时,充电进入恒流充电阶段。通常恒流充电电流取为0.5C(C 为锂电池的容量)。当锂电池的电压达到标准电压时,进入恒压充电状态, 充电电流不断减小, 直至电流减小至100mA
从图2 可知升压电路通过外接10uH 电感储能, 利用反馈电阻R1 与R2 控制升压电路的输出电压, 利用RT9266B 内部自待的PWM 控制器控制NMOS 管的导通与截止, 来控制升压电路的输出电流。由于该芯片内部具有自适应的PWM 控制器,能够适应较大的负载变化范围。
用该升压电路将3.7V 2000mAh 聚合物锂电池升压至5V时,输出电压纹波只有40mV,最大输出电流可达500mA。
3 充电电路
3.1 锂电池充电电路的基本原理
锂电池的充电过程可分为三个阶段:预充电、恒流充电和恒压充电。当锂电池的电压低于最小充电电压,则首先进入预充电阶段,以微小电流(通常取标准电流的10%)给电池充电,直至电池电压达到最小充电电压。此阶段的预充电能够防止锂电池在过放后直接以大电流恒流充电造成的损坏。当电池电压高于最小充电电压时,充电进入恒流充电阶段。通常恒流充电电流取为0.5C(C 为锂电池的容量)。当锂电池的电压达到标准电压时,进入恒压充电状态, 充电电流不断减小, 直至电流减小至100mA左右,充电完成。