根据国际海上环境保护委员会1980年6月13日通过的MEPC.5(XⅢ)决议要求:为快速和准确地测定污油水舱的油水界面,必须在油船上安装主管机关所批准的有效的油水界面探测器,在油水分离受影响的和打算把水直接排到海里去的其他舱也应该有这种探测器。为填补国内本项空白,研制本UIT油水界面探测器。
概述
油水界面探测器具备如下功能:
油水界面探测器可探测气油界面、油水界面的位置。测量气体温度,油温度和水温度。
采用系统自校正设计方案简化生产工艺,并提高气油界面、油水界面的位置及气体温度,油温度和水温度测量精度。
数字式液面数据处理显示仪表可对系统测量精度进行校正,数据处理,显示、报讯。
利用液晶显示器显示各种校正或测量提示信息、测量数值及状态信息。
油水界面探测器包括带微处理器液面传感器、数字式液面数据处理显示仪表及绝缘卷尺组成。
图1 油水界面探测器的系统组成图
图1中所示, 带微处理器液面传感器由电容传感器、电容量测量信号调理电路、放大器、A/D转换器、微处理器、串行接口及微型开关电源(图中未示出)组成;数字式液面数据处理显示仪表由串行接口、微处理器、液晶显示屏及微型开关电源(图中未示出)等组成。
本探测器较之其他现有液位、液面测量仪表,具备以下特长:
采用高性能的电容量测量及调理集成电路,提高测量精度,而且不受周围环境的影响。
用双CPU组成测试系统,以数字形式进行传输,提高仪表的可靠性。
传感器配备微处理器对信号进行预处理后,以数字形式进行传输。
主机的微处理器接收到数字信号,进行后处理后再显示和报讯。
在传感器中只需增加极少的硬件开支,便可附加其他传感器,如温度传感器测量温度,压力式液位传感器测量液体深度,以实现多参数的同时测量。
采用微型高效率开关电源集成电路,提高干电池的电源利用效率。
液面传感器可以有继电器输出控制型和串行数据输出型,作为付产品。
液面传感器
本设计的油水界面探测器采用介质变化型电容传感器。假设电容器为两平极结构,作绝缘处理后的电容器两极间浸入不同的界质中,由于电容器中的介质相对介电系数不同,电容量是不同的;而当电容器两极处在两不同介质的界面处,当液体介质的液面发生变化,也将导致电容器的电容C也发生变化。作为界面探测器其重点是后者,即检测电容传感器在气油界面、油水界面位置变化导致电容器的电容C变化情况。
电容传感器处在大气中、浸入不同液体或浸入不同液体深度不同,其电容量的变化,采用专用的信号调理电路把电容量转换比例电压输出。在大气中相对介电常数为1,电容传感器的电容量为C0,经调理转换后输出电压为V0,在油品中相对介电常数变大,在水中相对介电常数更大,电容传感器的电容量将随着浸入不同液体深度加大而变大,经调理转换后输出电压也将随之变大。这电压信号再经放大器放大和A/D转换,得到不同的A/D值。A/D值的大小表明传感电容器所处的介质或淹没入油、水介质的深度。
本油水界面探测器采用两通道A/D转换器,其中一通道用于测量传感电容传感器的输出电压,另一通道用于温度信号的测量。微处理器控制数据的采集并进行数据预处理后,以数字形式用一定格式通过串行接口把两个数据传送往显示仪表。
油水界面探测器的关键器件是电容信号调理电路CAV414。CAV414是一种专为电容传感器而设计的通用性强、多用途集成电路,该芯片内包含有完整的信号处理单元。(见图二)CAV414芯片内含基准振荡器,其振荡频率可由基准振荡电容Cosc和Rosc来调整,基准振荡器驱动2个同步积分器,而在电阻(Rcx1+W0)和Rcx2值相同时,电容Cx1和(Cx2+Cx)则决定2个被驱动的积分器的积分电压幅度,即积分器的积分电压幅度差别反映了电容Cx1和(Cx2+Cx)的相对容量差。CAV414具有很高的共模抑制比和分辩率。它的差分信号端可由低通滤波器来进行处理和限定,而低通滤波器的角频率和增益也由几个外接元器件来调节,输出信号幅度也可由内部放大器进行预放大,放大倍数可由RL1/RL2及R1/R2确定。
用CAV414来测量电容,其电路如图2所示,图2中,Cx为电容传感器,其值很小,应用中可将电容传感器置在大气中,调节电位器W1,使(Rcx1+W0)和Rcx2在电容Cx1和(Cx2+Cx)的初始值时使Vout输出0电压。那么,当电容传感器在气油界面、油水界面位置变化导致电容器的电容Cx变化情况,使输出电压Vout发生变化。其从小到大变化规律是: