首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
Hopfield网络求解TSP两种改进算法的仿真研究
来源:本站整理  作者:佚名  2009-12-23 11:45:30



1 引言
    用Hopfield神经网络求解旅行商问题(TSP),给组合优化完备性问题的求解提供新的方法。但该算法会经常生成无效解,因此需进一步改进。有学者通过TSP网络的动态分析修正TSP的能量函数,从而获得有效解,但其能量函数的表达式过于复杂。有人简化该能量函数,进一步提出改进算法。这里拟对典型的两种改进算法进行仿真分析。

2 HopfieId网络的能量函数
    为将TSP问题映射成神经网络的动态过程,Hopfield采取置换矩阵的表示方法,用N×N个神经元组成Hopfield人工神经网络表示商人访问N个城市。
    网络达到稳定状态时各神经元的状态对应置换矩阵各元素的值(“1”或“0”)。用uxi表示神经元(x,i)的输出,相应的输入用Vxi表示。
    若城市x在i位置上被访问,则Vxi=1,否则Vxi=0。Hop-field定义如下形式的能量函数:
   

   
式中,A、B、C、D是实系数。dxy为城市x与y之间的距离。
    式中前3项是问题的约束项。最后1项是优化目标项。利用动态方程:
   
式中,VT表示V的转置。
    求得A、B、C、D和d描述的连接矩阵和及偏置,的表达式:

    Hopfield把能量函数的概念引入神经网络,从而开创求解优化问题的新方法。但该算法会以大百分比生成无效解,因此需进一步改进。

3 改进算法与仿真
3.1 改进算法1
   
Aiyer等人从理论上证明Hopfield网络不能生成有效解的原因,并提出一个新的连接矩阵:

外部输入
    可从理论上证明该算法的有效性,试验也验证它几乎100%可获得有效解。利用上述改进算法对Hopfield的10城市问题进行模拟试验,已知其最短路径为2.690 6。模拟试验采用两种神经元状态更新函数,一种采用S型函数,即
   
    另一种采用如下定义的软限幅函数:
   

[1] [2] [3]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:114,582.00000 毫秒