图3. 本图所示为一个升压转换器在不同负载下的典型输出电压曲线。在轻载或空载时(绿色曲线),测得的转换时间(上升电压)为数百微秒,而闲置时间(下降电压)为数秒。要注意的是这种变化是发生在MCU处于省电模式或功耗极小时。在主要工作模式,即有源调节模式下,输出电压仍保持稳定(3V +/- 100mV)(红色曲线)。
此外,在轻载或空载时,调节模式下的转换器将周期性达到它的占空比低限。通过自动切换到低电流模式,转换器便停止转换,耗电量被降至最小,但同时仍然保持有源状态(见图3)。当MCU处于断电或功耗极小时,输出电压便会出现这种变化。而在主要工作模式,即有源调节模式(Active Regulated Mode)下,输出电压仍保持稳定(3V +/- 100mV)。另外需注意的是,典型转换电压会随电池能量的消耗而变化(见图4)。调节器是一个独立的子系统,无需MCU的主动管理。不过,对于那些需要更直接地控制升压调节器的设计人员而言,某些特性可利用软件来加以控制。
由于实际效率取决于应用,故集成所有与功率调节相关的无源器件毫无意义。例如,成本是某些市场的主导因素,而在另一些市场,最重要的推动力却可能是使用寿命。与其被迫采用针对其它市场而优化的无源器件,或所有应用都还算满意但非最佳的产品,开发人员还不如选择能够给自己的应用提供最佳平衡的的无源元件。而这只需区区几个元件就可以做到(即一个电感、两个旁路电容和一个肖特基二极管)。
智能电池管理
准确估算剩余能量,是最大化电视电量使用率的重要因素。譬如,充电电池需要在设置范围内进行严密监控和充电控制,以确保电池的安全使用,并获得尽可能长的使用寿命。剩余电荷的估算越准确,电池就越能够接近极限容量来安全充放电,而不必担心因充放电过度对电池造成损害。
虽然更精密的电池充放电控制意味着电池有更多可用能量,从而使用时间更长,但这种控制方式缺乏灵活性,而且可能严重限制处理器能够支持的电池技术。例如,不同化学性质的电池具有不同的安全充放电电压阈值,如果MCU有固定阈值或在阈值配置方式上有所限制,那么其就会成为MCU有效管理的电池技术方面的障碍。因此,开发人员可能会被迫根据所选用的MCU来使用特定电池,而不是选择最适合的电池技术。
对于必须替换电池的应用,支持充电电池的灵活性至关重要。充电电池的阈值相比一次性电池大为不同,如果消耗过度,可能会损害其总体充电容量。由此造成的使用时间缩短,极可能被归类为设备故障而不是电池故障。ATtiny43U的固件能够利用内建ADC来监控电池电压,并决定什么时候让设备进入停机模式(Stop Mode),从而彻底消耗一次性电池的电量,同时确保充电电池在多个充电周期上都能够获得最长的使用时间。
虽然自动关断处理器可以保护充电电池,但是从应用的角度来看,突然断电可能是不可接受的。例如,突然关断相机会致使镜头暴露在外,令镜头容易受损。因此,设计人员可以通过一个重要的功率管理元件来准确估算剩余的能量。比如,利用ATtiny43U的10位ADC每隔一定时间对电池电压进行测量,就可以达到前述目的。采用这种方法,就有机会在设备关断之前,让各个器件进入安全配置。
在应用级实现高功效
许多应用都会加入一个MCU作为主机处理器的辅助处理器,用于卸载显示器刷新、键盘监控、小型电机工作以及智能电池管理等任务。采用辅助处理器的优势在于,MCU能够以高于应用处理器的功效来执行这些功能。譬如,一个监控键盘的应用处理器必须被频繁唤醒来执行任务。而因为MCU在工作模式下的功耗小于应用处理器,所以采用MCU来监控键盘及更新显示器便可以使应用处理器更长时间地连续处于睡眠状态,从而节省可观的能量。
当然,处理效率也对功效有重大影响,因为MCU每个周期能执行的工作越多,它进入睡眠模式的速度也就越快。而提高时钟频率会增加功耗,故效率更高的MCU架构能够支持在单个周期内一个动态工作频率和执行指令,并执行外设自动化管理。
超低功耗MCU还需要多种睡眠模式。例如,一个传感器应用可以监控温度,直到它超过阈值。如果在监控期间整个MCU处于工作模式的话,所消耗的能量会比实际需要的更多。支持不同的睡眠模式,允许开发人员关断设备的不同部分,实现更佳的节能效果(见表1)。
表1. 超低功耗MCU具有多种睡眠模式,因此在仅需有限功能而无需整个MCU以大功率工作模式工作的时候,开发人员可在不同的低功耗闲置模式下配置一个超低功耗MCU。
ATtiny43U架构中有数种架构创新技术,可供开发人员用于提高工作模式和睡眠模式下的功效:
精确的电源电压:虽然MCU可以接受单电压电源,但在架构上它可能有多个不同的内部电压。这样的设计方法带来了低功效,因为动态功率高于预期。若所有模拟外设、闪存、EEPROM及RAM都工作在同一个电压下时,设备的总体功耗便会降低。
泄漏电流最小化:温度、电源电压和工艺技术都会影响泄漏电流。超低功耗MCU不是对现有架构进行修改,使其能够在更低电压之下工作,而是必须以功效为理念从头开始设计,而爱特梅尔的picoPower AVR微控制器系列就是一个示例。