1.2 DDS产生的软件设计
1.2.1 FPGA软件设计
FPGA负责接收由单片机送过来的频率字与相位控制字,同时将波形在ROM中的数据送给DA转换器进行DA转换,输出正弦波、方波、三角波三种波形,通过调节DA转换器的基准电压可调节输出的正弦波、方波、三角波三种波形的幅度,利用按键可以设置一定范围内的频率值和步进值,并能实现波形间的任意切换,实现了频率、步进、幅度的任意调节。
1.2.2 单片机软件设计
单片机软件设计主要是负责接收键盘置入的频率、步进值、选择波形并将其在液晶显示屏中显示和把各种控制信号和数据送到FPGA中。可设置任意频率、任意步进、波形切换等多种输出方式,在此基础上可扩展为任意信号发生器,具体程序流程图如图3:
1.2.3 FPGA与单片机的通信
本系统设计中,FPGA与凌阳单片机采用串行输入并行输出的方式进行通信。使用VHDL语言在EP2C20器件中利用D触发器和移位寄存器接收凌阳单片机发送过来的频率控制字和相位控制字,然后送入相位累加器。在FPGA与凌阳单片机通信中,单片机实行串行输入,不断地向FPGA送频率控制字和相位控制字,送给FPGA实现相位累加。
2.等精度频率计的实现
为了减小误差,得到高的测量精度,我们采用多周期同步测量法,即等精度测量法,通过对被测信号与闸门时间之间实现同步化,从而从根本上消除了在闸门时间内对被测信号进行计数时的 l量化误差,使测量精度大大提高,是在测量领域用得比较多的的一种精度很高的测量方法。
2.1 频率测量总体设计与方案
本系统主要是以凌阳单片机和FPGA为核心,多周期同步等精度测量频率计的核心结构用VHDL硬件描述语言对FPGA进行编程,实现频率、周期、脉冲宽度和占空比的测量。而单片机则作为控制部分实现了频率计的控制、扫描和显示,系统级框图如下图4:
本设计频率测量方法的主要测量原理如图5所示,图中预置门控信号GATE是由单片机发出,GATE的时间宽度对测频精度影响较少,可以在较大的范围内选择,只要FPGA计数器在计100M信号不溢出都行,根据理论计算GATE的时间宽度Tc可以大于42.94s,但是由于单片机的数据处理能力限制,实际的时间宽度较少,一般可在l0~0.1s间选择,即在高频段时,闸门时间较短;低频时闸门时间较长。这样闸门时问宽度Tc依据被测频率的大小自动调整测频,从而实现量程的自动转换,扩大了测
频的量程范围;实现了全范围等精度测量,减小了低频测量的误差。
2.2 测频输入级的设计