首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 电子技术 > 光电应用
基于交流或直流电源的LED驱动电路设计
来源:本站整理  作者:佚名  2009-08-21 11:09:32



  在这类可能需要采用PFC控制器的应用中,传统的解决方案是PFC控制器+PWM控制器的两段式方案。这种方案支持模块化,且认证简单,但在总体能效方面会有折衷,如假设交流-直流(AC-DC)段的能效为87%至90%,直流-直流(DC-DC)段能效为85%至90%,则总能效仅为74%至81%。随着LED技术的持续改进,这种架构预计将转化为更加优化、更高能效的方案。根据要求的不同,有多种可供选择的方案,如:PFC+非隔离降压、PFC+非隔离反激或半桥LLC、NCP1651/NCP1652单段式PFC方案。

  另一方面,如上所述,在不需要隔离的应用中,可以采用较为简单的降压拓扑结构,这种结构所使用的电感比变压器小得多,而且只需要很少的元件来实现这种解决方案。这种架构采用的是峰值电流控制(PCC)模式,工作在深度连续导电模式(CCM)。这种架构具有多种优势,如可以消除使用大电解输出电容、具有“良好”稳流的简单控制原理,以及能够充分利用安森美半导体的动态自供电(DSS)技术能力来直接从交流线路为驱动器供电。图3显示的是安森美半导体NCP1216 PWM电流模式控制器的应用设计示意图。

采用峰值电流控制的NCP1216非隔离型离线式LED驱动应用

图3:采用峰值电流控制的NCP1216非隔离型离线式LED驱动应用。

  它充分利用高压工艺技术的优势,从交流主电源直接为控制器供电,进一步简化了电路。这设计适合120 Vac条件,若要用于230 Vac条件,则需要变更少许元件,如功率FET和电容。由于这是一种非隔离型AC-DC设计,所以存在高压。而且这是一项浮动设计,IC和LED并非对地参考。在对器件进行供电之前,LED必须连接至电路板。

  对于这类降压控制方式而言,当控制的LED数量减少时,它的一项局限就会出现,因为这时占空比会变得极窄。而且开关控制器在电流被感测到之前会有200至400 ns的前沿消隐电路。在这种情况下,必须降低开关频率来适应正常操作,并通过半波整流输入电路将电压保持在最低值。在这种方法中,基本架构能够通过元件修改来轻易扩展,从而也能驱动更长的LED串。

  2)采用宽输入范围的直流-直流(DC-DC)电源为LED供电

  有一系列高亮度LED应用工作在8至40 VDC范围的电源,这些电源包括铅酸电池、12-36 VDC适配器、太阳能电池以及低压的12 和24 VAC交流系统。这类的照明应用众多,如活动式照明、景观和道路照明、汽车和交通照明、太阳能供电照明,以及陈列柜照明等。

表1:宽输入范围的DC-DC LED应用。

  即使目标是采用恒定电流驱动LED,首先要理解的事件就是应用的输入和输出电压变化。LED的正向电压由材料特性、结温度范围、驱动电流和制造容限决定。凭借这些信息,就可以选择恰当的线性或开关电源拓扑结构,如线性、降压、升压或降压-升压等。而安森美半导体的NCP3065/3066是一种多模式LED控制器,它集成1.5 A开关,可以设置成降压、升压、反转(降压-升压)/单端初级电感转换器(SEPIC)等多种拓扑结构。NCP3065/3066的输入电压范围为3.0至40 V,具有235 mV的低反馈电压,工作频率可调节,最高250 kHz。其它特性包括:能进行逐周期电流限制、不需要控制环路补偿、可采用所有陶瓷输出电容工作、具有模拟和数字PWM调光能力、发生磁滞时内部热关闭等。

安森美半导体NCP3065在LED恒流降压控制应用中的示意图

图4:安森美半导体NCP3065在LED恒流降压控制应用中的示意图。

上一页  [1] [2] [3] 

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:151,367.20000 毫秒