主要功能模块的设计
目前,显示屏按数据的传输方式主要有同步显示和脱机显示两类。本文所介绍的LED显示屏控制是一套同步显示系统,即用一套嵌入式系统来为LED显示屏提供视频源,既可以降低成本,又具有很高的可行性和灵活性,易于工程施工。
独立视频LED系统
LED 显示屏的主要性能指标有场扫描频率、分辨率、灰度级和亮度等。显然,在不同的应用场合需要对这3个性能指标进行适当的取舍。因此,场扫描频率、灰度级和亮度通常由控制器决定,而分辨率可以通过控制器阵列的方式得到很大的提高。本文实现的控制器中,通过控制器阵列的形式,获得两路光纤数据输出,实现大的 LED显示屏控制面积(2048*768),从而实现颜色细腻的全彩色超大屏幕的LED显示。
独立视频LED系统完全脱离计算机的控制,本身可以实现通信、视频播放、数据分发、扫描控制等功能。
控制系统可以通过对视频数据进行解码,获得RGB格式的视频流。再通过数据分配单元,将这些数据分别发送到不同的LED显示控制器上,控制器将播放单元提供的数据显示到全彩色大屏幕LED上。
视频数据分配方案
由于控制器是对大帧数据(例如1024*768)进行控制,因此需要对视频源提供的数据进行分配,将不同行列的数据正确地送入不同的控制器。
本系统中的LED控制器灰度级高达3×12位(可显示多达64G种颜色)、控制像素为1024×768点。因此,需要将前端提供的RGB数据分3组发送到不同的分配器,以FPGA实现,方案如图2 所示。
图2. 视频数据分配方案
数据校正子模块接收前端输入的数据,将这些数据进行逐点校正之后存入SDRAM。然后将该场数据分成8组,同时发送给LED分配器。
为了方便各模块间的接口,有利于不同时钟域的数据同步,系统采用SDRAM作为主存储器。SDRAM具有容量大、带宽高、价格便宜等优点;但是控制比较复杂,每次读写有多个控制和等待周期。因此为了提高效率,通常采用地址递增的猝发读写方式,而不能像SRAM那样随时读取任意地址的数据。