系统输入为3Φ 200VAC,经三相全桥整流为约270VDC供给IPM,并由270V进行DC/DC转换产生辅助电源,为DSP、上位机及IPM模块提供控制电源。上位机接受主系统控制,对DSP发出2路电机起停、4级加速度及8级速度的控制信号,DSP根据上位机的控制信号产生两组6路脉冲分别控制两个IPM模块,从而控制两路电机的起停、加速度及转速。两路电机的转速通过轴编码器反馈回上位机。IPM的故障信号反馈给DSP,DSP将故障信号及掉电信号反馈回上位机。系统框图如图1所示。
图1 系统原理框图
自举电路
一般逆变电路中,因上臂3个IGBT的触发脉冲的参考地是悬浮的,故上臂触发脉冲需3组相互隔离的电源供电。下臂3个IGBT的触发脉冲是共参考地的,只需一组供电电源。故共需多达4组相互隔离的电源。而三菱公司的DIP-IPM采用自举电路结构,可方便地实现单电源驱动。具体工作原理如下:当DIP-IPM起动时,先给下臂IGBT发出足够的充电脉冲数或足够宽的单个脉冲,开通下臂(N侧)的IGBT,使下臂的供电电源通过IPM的内部充电路径使上臂的3个自举电容完全充电,从而给上臂的3个IGBT的触发脉冲供电。然后才开始发出PWM控制脉冲。自举电路充电路径及工作时序图如图2所示。
图2 自举电路充电路径及工作时序图
自举电容C1的容值计算公式为C1=IBS X T1/△V,式中T1为上臂IGBT的最大通态(ON)脉宽,IBS为IC的驱动电流(考虑温度和频率特性),△V为允许的放电电压。注意,用该式计算出的自举电容容值应是最小值,实际选择时应增加一定裕量。
自举电阻R2的阻值选择应满足下述条件:时间常数R2 X C1能使放电电压(△V)在下臂IGBT的最小导通脉宽(T2)内被充电到C1上。即 R2={(VD-VDB) X T2}/(C1 X △V),式中VD为电源电压,VDB为自举电容C1上电压。
自举二极管选择:对3Φ 200VAC电路,若电源输入电压波动范围取±30%,则三相全桥整流后直流电压VD=200 X 1.3 X 1.35=351(V),取最小裕量为1.5,则自举二极管耐压应为351 X 1.5=526.5(V),取600V。故自举二极管额定电压最小应为600V,因为PWM载波频率较高(最大为20KHZ),推荐选用快恢复二极管(反向恢复时间小于100nS)。