为了实现网侧风电变流器的控制目标,提出了一种基于DSP的网侧风力发电变流器控制板的设计方案,并完成系统的软硬件设计。该控制板的硬件部分主要是基于主控芯片TMS320LF2407A,软件部分采用C语言进行编程,能够完成模拟信号的采样、处理、输出。实际试验表明,该控制板具有控制准确,反应迅速的特点,达到设计要求。
关键词:DSP;风力发电;网侧变流器;TMS320LF2407A
能源是人类社会存在与发展的物质基础。过去200多年,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大地推动了人类社会的发展。然而,人们在物质生活和精神生活不断提高的同时,也越来越感悟到大规模使用化石燃料所带来的严重后果,资源日益枯竭,环境不断恶化。能源与环境问题已成为全球可持续发展所面临的主要问题。因此,人类必须寻求一种新的、清洁、安全、可靠的可持续能源系统。风力发电以其无污染和可再生性,日益受到世界各国的重视,风能成为保持增长最快的能源。风能资源是清洁的可再生能源,风力发电是新能源中技术最成熟、最具规模开发条件和商业化发展前景的发电方式之一。世界上很多国家,已经充分认识到风电在调整能源结构、缓解环境污染等方面的重要性,对风电的开发给予了高度的重视。
风电变流器是将风力发电机输出的电压幅值、频率变化的电能转换为恒压、恒频的交流电能的装置,是风力发电系统中的一个重要部件。因此,研制适用于风电转换的高可靠性、高效率、控制及供电性能良好的风力发电变流系统,是风力发电技术的研究重点,具有重要的意义。风电变流器可以分为两部分:转子侧模块和网侧模块。文中着重研究了网侧风电变流器的控制系统,以达到2个控制目标:1)保证其良好的输入特性,即输入电流的波形接近正弦,谐波含量少,功率因数接近1,这就为整个系统的功率因数的控制提供了一个途径;2)保证直流母线电压的稳定,直流母线电压的稳定是风电变流器正常工作的前提。
1 控制系统硬件设计
图1所示是网侧变流器控制板电路结构图,包括DSP控制板(DSP芯片是TI公司的TMS320LF2407A,负责A/D采样、运算控制等功能),信号采集电路,信号放大调节电路(对霍尔传感器采集的电压、电流信号进行放大、偏移处理),IGBT驱动、保护电路(使用光耦隔离将DSP控制板和强电部分隔离起来,降低干扰,并实现IGBT模块的保护功能)。下面介绍这几部分的电路实现。
1.1 控制芯片的选择
文中采用的是面向数字控制、运动控制的TMS320C2000系列的TMS320LF2407A,它们兼DSP的高运算速度和单片机的强控制能力。TMS320 LF2407A芯片集成了16通道10位500 ns的高性能A/D转换器;CAN2.0模块等模块。TMS320LF2407A具有2个事件管理器模块EVA和EVB事件管理器包括:2个16位通用定时器,8个16位PWM(脉宽调制)通道,可以实现三相反相器控制、PWM的中心或边缘校正,当外部引脚DPINTX出现低电平时快速关闭PWM通道,防止击穿故障的可编程的PWM死区控制,对外部事件进行定时捕捉的3个捕获单元,片内光电编码器接口电路,如此功能强大使得TMS320LF2407A大大简化了外部硬件电路的设计。
1.2 信号采样电路设计
根据图1,可以看到系统设计中需要采集模拟信号包括了网侧电流、网侧电压、直流母线电压。本设计选用了霍尔元件作为电压、电流传感器。选用的霍尔电流传感器型号为CHB-50A,其工作原理为霍尔磁补偿,额定电流为50 A,匝数比为1:1 000,工作电压为±5 V,具体电路如图2所示。
1.3 信号调节电路设计
电压、电流采样电路输出的电流信号首先经过一个功率电阻转换为相应的电压信号,电压信号经RC滤波后与一直流电压给定信号相加后经比例放大,送入DSP的A/D口。与直流电压给定信号叠加的目的是使输入的交流信号经过直流偏置后在0~3.3 V之间变化,满足DSP的A/D口对输入信号的要求。滤波以及比例放大是为了减小干扰。如图3所示为电流、电压信号的调节电路。