④mdControlChan函数。用来操作外部视频设备,完成对视频数据的采集和输出。对于GIO_capture和GIO_play这两个设备接口的mdControlChan函数接受的命令是不同的:
视频输入GIO_capture接口的mdControlCham函数只接受cmd_start命令,完成1帧视频数据的采集;而视频输出GIO_play接口的mdControlChan函数只接受cmd_display命令.完成视频信号的输出。
3.4 视频驱动模型裁剪的一般方法
TI公司设计的GIO/FVID视频设备驱动原型相对复杂,且占用较多的系统资源,要使其可以应用于更通用的低端处理器系统,就必须进行改造和裁减。在改造中要注意以下几个方面:
①阻塞的I/0操作。TI公司6000系列的DSP具有FDMA功能,传输数据不需要CPU的干预,而DM64X还具有专用的视频接口,传输数据不会占用外部扩展总线,所以视频数据的处理和输入输出是可以并行的。而低端处理器是不具备这样功能的,视频设备一般都是通过外部扩展总线连接的,所以对视频设备的操作必须设计为阻塞型的I/O操作,视频数据输入/输出的过程是由CPU来完成,且要保证对视频设备的操作不会被其他操作中断。
②对视频数据缓冲区的管理。GIO/FVID视频设备驱动原型中使用的3缓冲区模型,虽然功能很完善,却占用了太多的存储空间,所以对于实际的视频处理系统就要进行调整,改为两缓冲区甚至是单缓冲区模型。对于具有独立硬件缓存的输出设备,可以考虑不再为其分配动态缓冲区。
③对视频设备的操作。mdControlChan函数主要用来操作外部视频设备,只要保留对实际系统有用的操作就足够了,而GI0/FVID视频设备驱动原犁中定义的很多操作都可以省略。
4、小结
本文介绍了基于DSP/BIOS的外设驱动程序模型,并针对基于F2812DSP的视频处理系统这一具体的硬件平台,重点介绍了开发GIO/FVID设备驱动的流程和针对低端处理器系统的视频驱动模型裁减方法。本视频驱动程序为开发各种视频处理应用程序(如JPEG图像EPA控制网络中ZigBee压缩、MPEG视频压缩、视频监控程序等)提供了有力的支持。本文介绍的设备驱动程序的开发方法,对于同类视频处理系统,特别是对于使用TI2000系州DSP这样系统资源比较有限的视频处理系统,具有很好的可借鉴性。
引言
随着时代的发展,DSP技术在远程监控、可视电话、工业检测等视频处理领域得到了广泛的应用,对于不同的视频处理系统,会使用不同的视频设备,所以有必要为视频没备设计驱动程序,为高层应用程序提供统一的接口来操作底层硬件。只要是遵循此驱动程序接口标准开发的高层应用程序,都可以在具有相同接口的不同硬件平台上运行,具有很好的通用性和可移植性。同时高层应用程序设计人员只要会使用设备驱动程序提供的API接口,就不必了解底层硬件的具体实现,可以大大提高整个视频系统的开发效率。
对于视频设备,TI公司也提出了对应的视频设备驱动程序模型,但这些模型主要是针对6000系列高端DSP,甚至是DM64X这样的视频处理专用DSP设计的。而TMS320F2812(简称F2812)DSP这样的低端处理器,内部存储空间较小,且没有DM64X那样专用的视频接口。本文针对这类问题,提出了对TI视频驱动模型进行简化和改造的方法,使视频设备驱动程序占用尽量少的系统资源,来完成对视频硬件设备的操作。这种视频驱动模型的裁减方法,对于使用低端处理器的视频处理系统具有借可鉴性。
1、基于DSP/BIOS的外设 驱动开发模型
TI公司为开发DsP的外设驱动程序,推出了DSP/BIOS Device Driver kit,定义了标准的设备驱动模型,并提供了一系列的API接口。如图1所示,外设驱动程序分为两层:
①类驱动(class driver)。类驱动程序用来为应用程序提供接口。这部分程序与设备无关,主要功能包括维护设备数据缓冲区,向上提供API接口供应用层程序调用,并协调应用程序对外设操作的同步和阻塞;向下提供适配层与迷你驱动层相连,实现API接口函数到迷你驱动层程序的映射。类驱动程序与硬件无关,只要外设驱动模型选定了,类驱动程序就定下来了,不需要做多少修改。
②迷你驱动(mini driver)。迷你驱动程序与设备相关,所以设计迷你驱动程序是外设驱动开发中的重点。迷你驱动程序与类驱动层的接口格式是统一的,但迷你驱动程序对底层硬件的操作是根据硬件平台的不同而变化的。迷你驱动接收类驱动层发出的IOM_Packet命令包,决定对底层硬件进行什么样的操作。