2.3 总线的抗干扰措施
(1)采用三态门式的总线提高抗干扰能力。由于DSP总线的直流负载能力有限,如果不够,就需要通过缓冲器再与芯片相连接;
(2)总线上数据冲突的防止措施:CPU与随机存储器的连接是由总线收发器通过内部双向数据总线实现的,内部数据总线上会在某瞬间产生冲突,解决方法是缩小随机存储器存取数据的时间即缩小选通时间;
(3)克服总线上瞬间不稳定的措施:当两个相位相反的控制信号在时间上存在偏差时,一个由低电平变为高电平,而另一个还来不及由高电平变为低电平,两个均是高阻状态,这一瞬间如果总线的负载是TTL电路,他将因自身的泄漏电流使总线电压不稳定;若负载全是CMOS或NMOS,则有几百兆欧的断开状态,很容易耦合干扰。用上拉电阻连接到电源,使总线在此瞬间处于高电位,这样增强了总线的抗干扰能力。其上拉电阻常选择1Ω。
2.4 功率输出的电磁兼容设计功率输出部分是由IPM、驱动电路和泵升电路组成的电源变换器。运用PWM算法,DSP产生的6组PWM信号通过光电耦合器的隔离传输,再通过IPM驱动电路控制IPM内部的IGBT开关工作。直流电源端加吸收电容,可以抑制开关噪声。在系统设计中应保证低压控制电路尽可能地远离功率电路,以保证低压地信号不受到电磁幅射和耦合。
2.5 印制电路板抗干扰措施
实践证明,印制电路板的设计对抗干扰和保证系统的工作稳定有重要影响。印制电路板加电后,印制线上的电流将产生电磁波辐射到空间,电路中的高速元件、晶体振荡器等器件也将产生电磁辐射。在高速处理的数字系统中,当2倍的延迟时间大于脉冲的上升沿或下降沿时,印制电路板中的数字信号传输线应当按分布参数的传输线的要求考虑匹配,如一般转换速度较快的TTL电路,印制线长度大于10 cm以上时就要加终端匹配措施。COMS电路的转换速度比较慢,印制线长度可放宽5~6倍。根据电磁辐射模型公式:
E=263×10-6(f2AI)/r
式中:E为印制电路板空间r处的辐射场强;f为印制电路板上的工作电流的频率;A为印制电路板上的环路面积;I为印制电路板上的电流。
由上式可以看出,减小f,A,I均可以降低印制电路板上的电场发射。为了更好地抑制干扰,印制电路板的设计中应考虑以下一些问题:
(1)布线原则:数字信号线和模拟信号线分开,强弱信号分开,直流电源线正交,发热元件应远离集成电路,磁性元件要屏蔽,每个IC芯片的电源端对地端要有去耦电容,引线要短;
(2)印制板的大小应适中,逻辑元件相互靠近,与易产生干扰的器件远离。印制电路板的接地线应尽量宽,这不仅仅是因为能减少损耗,而且也能减少线的电感分量,从而减小共模干扰。如果是双层布线或多层布线时应遵循电源和地为中间层、顶层和底层的电线相互正交,尽量少走平行线。
(3)印制电路板上电源输入端跨接10~100μF的电解电容,对易受电路中干扰信号影响和有暂态状陡峭变化电流的器件,其与地之间接入高频特性好的去耦电容,如RAM,ROM芯片动作时电流变化大,应在每片的电源端加O.01μF的陶瓷电容以旁路高频。
3 软件抗干扰技术
软件抗干扰既 能提高效能、节省硬件,又能解决硬件解决不了的问题。大量的干扰源虽然不能造成硬件的破坏,但却使系统的工作不稳定、数据不可靠、运行失常、程序“跑飞”,严重时可导致DSP的控制失灵、发生严重事故。由于故障是暂时、间歇、随机的,用硬件解决比较困难,而软件可借助以下的技术予以解决:
(1)利用陷阱技术防止干扰造成的乱序现象扩展下去;
(2)利用时间冗余技术,屏蔽干扰信号,即多次采样输入、判断,以提高输入的可靠性;利用多次重复输出来判断,提高输出信息的可靠性;重新初始化,强行恢复正常工作,以免I/O的输入输出不正常;查询中断源的状态,防止干扰造成误中断;在不需要的时间里屏蔽中断,以减少因干扰引起的误中断;
(3)容错技术:采用一些特定的编码,对数据进行检查,判断是否因存放受干扰,然后从逻辑上对错误进行纠正;
(4)指令冗余:对重要的指令可重复写多个;
(5)标志法:设特征标志、识别标志,常在内部数据区的保护中应用;
(6)数字滤波技术:主要针对模拟信号受到干扰。