3 如何节能
一个轮胎监测器节点要在一节锂电池下工作2~5年。射频发送数据帧时耗电最大,因此在保证数据传输正确的前提下应尽量减少发送次数。监测器节点上电初始化之后就开始数据采集,把测量的数据与设定阀值相比较,如果超过或低于设定值就立刻进行数据发送,反之计数器减1,采取测量10次(约60s)上传一次数据。这样既能降低功耗又能及时应对轮胎压力和温度的异常变化。数据包发送控制算法流程如图3所示。
图3 数据包发送控制流程图
性能测试
根据上述方案设计了一套测试用样品,包括四个轮胎监测器和一个车载监视器。将四个轮胎监测器放在同一个轮胎中,进行充放气实验。当气压值从正常到低压或高压时,车载监视器能够准确显示气压值,气压低或气压高时LCD屏对应状态图标闪动,蜂鸣器同时发出报警,经反复测试得出具体性能指标如下。
● 可监测胎压范围为100~450kPa,精度1.4kPa,通常轿车的轮胎气压在220~280kPa之间。
● 可监测温度范围为-40℃~125℃,轿车的轮胎温度一般在75℃左右。
● 利用SmartRF评估平台测得室内点对点数据传输速率最大约250Kb/s。
● 监测网络的工作寿命可达到2年以上。由于数据在收发的时候功耗最大(可达到10mA以上),为使整个网络的工作寿命达到2年以上,一方面在体积允许的条件下选用了较大容量的锂电池(1700mA·h),另一方面通过提高动态时延的基数值以减小数据收发的时间和频率。
结束语
本文提出一种基于ZigBee网络的TPMS设计方案。该系统不仅成本低廉而且性能安全可靠。经实际测试,该TPMS系统在低功耗、气压异常报警等各项性能指标均达到设计要求,同时配有直观的操作界面方面用户使用。
本设计的创新之处在于实现了轮胎识别的唯一性,采用一种基于素数的动态时延算法有效解决了发送数据的冲突,提出的节能算法既实现了功耗控制又兼顾了数据发送的实时性。