电子标签首先将原始数据(digital bits,即要返回的标签信息)进行曼彻斯特编码(manchester bits),然后再用编码后的数据信息以FSK方式调制到低速率的子载波423.75kHz和484.28kHz信号上(RF Bits FSK),即曼彻斯特码的高电平部分使用484.28kHz方波信号表示,低电平部分使用423.75kHz方波信号表示。最后再由子载波调制到 13.56MHz的载波上,以此方式回传给读头。返回信号编码及子载波形式如图2所示。
为了达到数据的传输同步,电子标签在曼彻斯特码的起始和结尾分别加入帧头和帧尾,帧头部分为11100010,用423.75kHz和484.28kHz信号调制后如图3所示。帧尾部分为01000111,与帧头的顺序完全相反,调制后如图4所示。
2 解码模块的结构及其实现原理
整个读头的结构由模拟电路部分和数字电路部分组成。模拟电路的作用是产生13.56MHz的载波信号、调制发送信号和解调返回信号。数字电路部分负责数字信号的编解码。FPGA是数字电路部分的核心,理想情况下返回信号经过模拟电路解调到达FPGA后,其数据格式如图2中RF Bits FSK所示。但在射频信号传输过程中和模拟电路的解测过程中都难免有噪声干扰,进入FPGA的信号实际上是带干扰FSK信号。因此必须在解码模块中对干扰加以消除,否则会大大降低电子标签的识别成功率。解码模块共分为八个部分,如图5所示,下面将对这些模块的功能进行具体介绍。
2.1 FSK信号的还原到曼彻斯特码
按照图2所示数据格式的逆顺序进行解码,首先将RF Bits FSK信号还原为Manchester Bits信弓。此部分由图5中的倍频器、周期测量模块和比较器三个模块实现。在本设计中计数器在高频时钟信号(本设计采用100MHz时钟信号)的驱动下,测量FSK信号中相邻的两个信号上升沿之间的计数值,依此来区分423.75kHz和484.28kHz两个频率的信号。