M33模块在上电后通过指令“AT+CNMI”设置成短消息提醒功能,当远程监控主机要求与之建立GPRS连接,将向M33发送短消息。M33接收到新的短消息,会向处理器发送一系列的数据信息,产生串口中断,微处理器相应串口中断进人中断服务子程序,执行指令“AT+CMGR”读取短消息内容,短消息内容符合规则将建立GPRS连接,进行GPRS数据通信,通信结束后关闭GPRS连接,重新回到短消息提醒模式。
同时M33还可以自动监控读写器。在读写器处于异常状态下主动向监控主机发出短消息,要求建立GPRS连接,主动告知监控主机读写器的状态,方便工作人员的管理,真正实现了系统的自动化和网络化。
3.4 多接口协同工作机制
读写器可以通过RS232、RS422、USB有线通信方式或GPRS无线通信方式与终端设备或监控主机保持通信。为了在实际应用中有效地使用这几个接口,需要采用多接口协同工作机制。
有线通信方式用于读写器与现场终端设备的通信,其中USB接口方式以其接口方便和高传输速率优先采用,在现场终端设备无USB接口或USB接口出现故障的情况下,可以选择RS232/RS422方式与设备终端通信。硬件设计上,读写器通过一个I/O口状态可以自动探测微处理器接入的接口方式,当USB接口和RS232/RS422接口同时存在时,优先选择USB通信方式。
GPRS无线通信方式用于读写器与远程监控主机的通信,微处理器通过串口发送AT命令控制GPRS模块M33。监控中心和M33之间的通信采用GPRS网络,用户手机和M33之间的通信采用GSM网络短消息的形式。经过设置,模块一旦上电即可处于短消息提醒状态,远程设备端可以在需要与之建立GPRS数据通信时向M33模块发送短消息建立数据通信,并在数据通信完毕后关闭GPRS连接,重新回到短消息提醒状态,这样就可以与M33方便地建立通信关系并且减少了永久在线时心跳包所造成的数据资源浪费。另外,M33还可以在读写器处于异常状态下主动向监控主机发出短消息,保证了系统的安全性。
4 功能测试
该读写器测试结果如下:待机电流为160 mA,读写射频卡时电流为240 mA。一般环境中可在O~10 cm范围内寻到射频卡;同时采用多人轮流刷卡的方法测试读卡的反应速度及准确度,l min连续测试200次未出现不读卡、反应不灵敏等现象;将多张卡放在读写器上面测试是否防冲突正常,测试没有出现不读卡、读错卡等现象。
读写器的USB和RS232/RS422接口通信方式切换自如,其中USB接口传输速率可以达到320 kb/s。GPRS模块M33可以快速地响应监控主机的短消息命令,其GPRS数据传输速率可以达到57.6 kb/s。整个测试结果表明,读写器运行稳定,数据传输速度快,GPRS无线接入方便快捷,基本达到了技术指标要求。
5 结论
本射频卡读写器读写距离可达10 cm,操作方便、灵活,通信接口多样,利用USB接口传输数据提高了数据的传输速度,保证了系统的可靠性和便携性要求;利用GPRS模块M33实现了读写器的无线接入,保证了系统的安全性和网络化的要求。本系统在地铁AFC系统中运行良好,可靠性高,读写射频卡迅速、方便、可靠、安全、稳定,并且在此读写器的基础上,只要稍加修改就能开发出不同的射频识别应用系统,具有很高的应用价值。