1.双馈调速系统的构成[1]
对于绕线式异步电机,定子接有固定频率(50Hz)的工业电源,转子侧接有频率、幅值、相位可调的变频器电源后即构成双馈调速系统。在电动机的转轴上装上转子频率检测器测出转差频率,利用此信号及矢量控制技术即可实现对变频电源输出电压(电流)幅值、频率及相位的控制,并使异步电机的调速性能几乎与直流电动机调速性能相媲美。
2.矢量控制的理论基础
为达到良好的调速性能对双馈电机采取先进的矢量控制技术。矢量控制的实质是在交流电机里构建出直流电机的模型,用直流电机的调速方法对其调速,而为了对真实的可控量进行控制,又须将其变换到原来所在坐标系的坐标。具体的实现方法是先求出定子磁链的方向,并以该方向为同步旋转坐标系的dc轴,超前其90º的方向为qc轴,这样就构成了dc-qc同步旋转坐标系。对转子电流进行了从三相到两相变换后,再将其变换到同步坐标系下,转子电流就被解耦成了一对转矩分量和激磁分量。前者位于qc轴,电磁转矩只和该值有关;后者位于dc轴,起到激磁的作用,可改善定子侧的功率因数。
反之若维持定子侧电压幅值恒定,则
恒定。则由电磁转矩统一公式知T=
在保证Us(即
)恒定的条件下,控制
即可实现转矩的调节。
3.控制系统结构
转子电流经过解耦后,就可用直流调速的方法对其进行控制。在控制系统中,给定量是转速,受控量是电磁转矩(转子电流的转矩分量)。为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,两者之间实行串级联接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管变流器的触发装置。转速调节器的作用是对转速的抗扰调节并使之在稳态时无静差,其输出限幅值决定允许的最大电流。电流调节器的作用是电流跟随,过流保护和及时抑制。
为了获得良好的动、静态性能,双闭环调速系统的两个调节器一般都采用PI调节器。两个调节器的输出都是带限幅的,转速调节器ASR的输出限幅(饱和)电压是Uin*,它决定了电流调节器给定电压的最大值,电流调节器ACR的输出限幅电压是Uctm,它限制了晶闸管变流器输出电压的最大值。[2]
图 1双闭环比例-积分调节示意图
4.Matlab 仿真模型的建立
双馈系统的仿真模型包括电机模块、控制系统模块、变频器模块。
(1)电机模块
Matlab中已经建立了异步电机模型,转子方面的各参量均折合到定子侧,并用上标撇号表示,其等效电路模型为
该对话框里没有电机定、转子电压变比关系一项,在此数学模型中这一信息也无法体现。比如,定转子的额定电压分别是6000伏、1640伏,但当仿真定子侧接6000伏电压、转子侧开路这种状态时,转子侧的电压也是6000伏,因此不宜将模型的转子直接与变频器模型直接相连。为了体现定转子之间电压、电流的变比关系,在转子输出端接一近似理想的三相两绕组变压器,该变压器副边的输出作为转子的输出,变压器的变比为定子侧额定电压与转子侧额定电压的比值。