首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
无动力弹轨迹平滑处理及实现
来源:本站整理  作者:佚名  2009-09-11 10:25:31



1 引言
    在现代战争中,随着精确制导武器的广泛使用,飞行控制技术的研究已日趋深入和普及。空地导弹在飞行过程中因弹道设计的需要一般分为滑翔、点火、转弯、俯冲等多个阶段,而每个阶段均对应几个或多个特征点。根据特征点的不同可把弹道划分为多个时间段,每个时间段对应不同的控制律,所以在相邻时间段的临界点,其控制系数会发生跳变。这将造成计算结果(控制量)在该点的突变,从而影响弹体的稳定飞行。这里论述了某无动力弹的飞行控制系统中解算控制率的方法,以及对其弹道临界点的平滑处理,并用数字信号处理器对其算法进行了工程实现。

2 用PID算法计算控制率
    比例积分微分控制器(简称PID)控制简单、可靠,物理意义明显,在工程实践中已广泛采用。PID控制器由比例单元、积分单元和微分单元组成。其输入e(t)与输出u(t)的关系为:

   
    在无动力空地导弹飞行控制过程中,飞行姿态误差信号分别为俯仰角误差θ(t)、偏航角误差ψ(t)和滚转角误差γ(t)。位置误差信号分别为:高度误差日(t)、偏航误差Z(t)和纵向误差X(t)。钻地航弹通过改变俯仰角V1、偏航角V2、滚转角V3来减小姿态误差和位置误差。因此,PID控制的输入为θ(t),ψ(t),γ(t),H(t),Z(t),X(t),输出为V1(t),V2(t),V3(t)。根据飞行力学中姿态角误差与位置误差的因果关系,并将PID控制关系式离散化,得到输入与输出的关系为:

   
式中:所有K都是经过仿真后得到的各特征点的PID系数。
    以上捕述的数学模型又称为位置型PID算法,该算法有很大的局限性,利用该算法容易产生积分项溢出。如果将计算的控制率直接用于控制回路,会造成控制回路的失稳。另外,由于钻地航弹的姿态角与位置的改变滞后于舵机的变化,况且由于受到航弹操纵性的影响,弹道误差也不可能瞬间消除,所以很有可能在较长的一段时间内弹道误差始终为正或为负。图l给出一段时间内的弹道轨迹。

    图l中,虚线为方案弹道,实线为真实弹道。在k△t和(k+n)△t时刻,弹道误差为0,在两个时刻间的n个点,真实弹道与方案弹道的差均为正值。此时,积分项有可能较大,直至溢出。况且计算控制率时只考虑到当前的弹道误差和姿态误差,而没有考虑到前一点的控制率,有可能使得V(k)一V(k一1)比较大,按照该控制率操纵弹的飞行,使得钻地弹飞行时产生剧烈的振荡,影响钻地弹的稳定飞行。所以利用该算法求解控制率时有一定的局限性,现讨论改进型的PID算法一增量性PID算法。
    将式(1)离散化可得:


    由式(5)可知,当前的输出误差由前一点的输出误差、输入误差和当前的输入误差组成,表明了一个递推关系,所以称为增量性的PID控制。
    将式(5)改写成增量性的递推关系.有:


3 临界点的平滑处理
   
在弹体的飞行过程中,不同飞行段的PID控制系数不同,在不同飞行段,PID系数甚至相差约10倍,所以临界点的控制变量按照式(6)计算时会出现较大的增量,把算出的临界点的控制变量带入舵机控制,会给弹体的稳定飞行带来很大的影响。所以合理处理临界点的控制变量也是保证弹体稳定飞行的一个重要环节。
    处理临界点的控制律有2种方法。一是限幅原理,即每次的控制增量不大于5°。这种方法被贯穿在所有点的控制变量解算过程中。该方法原理简单,但仅是粗线条地限制了控制率增量不能过大,不能正确反映控制变量的变化趋势;二是采用加权平均法处理临界点附近的控制变量,使得控制变量曲线比较平滑,而且临界点的控制变量前后具有延续性。避免了产生较大增量影响弹体的稳定飞行。

[1] [2]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:198,773.40000 毫秒