引言
针对以活性污泥法为基础的污水处理工艺,在处理高浓度有机物的污水过程中,混凝剂的投加是一个关键的问题,混凝剂的投加量直接影响最终的水处理效果和污水处理厂的运行成本。目前,大多数污水处理厂的混凝剂投加仍停留在凭经验,肉眼判断出水水质进行现场手动控制的方法,一般的药剂具有腐蚀性,投药间的工作环境差。因此,如何实现药剂的自动投放,减轻人工劳动强度,改善劳动环境是目前水处理行业普遍关注的问题。为此笔者开发了污水加药控制系统。
1 CAN总线介绍
为了改变操作人员的工作环境,实现加药系统的远程操作,加药控制系统采用CAN总线通信方式。CAN总线即控制器局域网,是目前国际上应用最广泛的现场总线之一,CAN总线是一种多主方式的串行通信总线设计规范,它具有高位速率,高抗电磁干扰性、低成本、极高的总线利用率,可根据报文的ID决定接收或屏蔽该报文,可靠的错误处理机制。最大通信速率为1Mps,最大传输距离达10km。CAN总线作为一种技术先进、可靠性高、功能完善且成本合理的远程通讯网络已被广泛应用到各个自动化控制系统中[1]。
2 基本原理
在污水处理过程中,加药反应过程是一个关键环节,由于影响加药量的因素很多,也很复杂,混凝剂的投加量不仅与处理工艺、进水浊度、pH 值、流量、水质、水温等有关,还和混凝剂种类、加药地点、混合方式、混凝剂质量浓度有关。根据污水处理的工艺要求,通过改变加药量来调整絮凝澄清效果,保证气浮机流出污水的浊度在一定范围即可保证净水效果。因此,加药量的控制非常关键,太少则混凝效果不好,水中胶体未完全絮凝。太多则发生再稳定现象,不仅出水效果差,而且浪费混凝剂。根据现场污水状况和污水处理工艺特点,污水的pH值和水温基本稳定。控制系统主要根据污水流量实现控制,以气浮机的出水浊度作为反馈修正,输出信号控制加药计量泵,实现对加药量控制。根据污水的进水量Q和单位污水需求混凝剂量K可以计算出加药量Q1,即Q1=K×Q,单位水需求混凝剂量K可根据原水的水质、药剂的浓度等因素确定。图1为加药控制系统的结构。由于计量泵加药后要经过一定时间后,才能测出污水浊度,具有很滞后性,不易实现实时控制[2]。但可以将污水的浊度数据和流量数据传给上位机进行数据分析,制定控制参数表,在线修正单位水需求混凝剂量K,保证出水浊度符合要求的范围。
3 硬件接口设计
图2为系统的硬件结构原理图,主要包括CAN总线接口、模拟量I/O接口和数字量I/O接口。
3.1 CAN总线接口
CAN总线控制器种类很多,常用的独立式CAN总线控制器有SJA1000,还有内置CAN总线控制器的微处理器。笔者采用PHILIPS公司的CAN控制器芯片SJA1000和CAN总线驱动器PCA82C250。CAN总线通信具有Basic CAN和 PeliCAN两种工作模式。SJA1000既支持CAN2.0A协议,也支持CAN2.0B协议,Basic CAN工作在CAN2.0A协议,PeliCAN工作再CAN2.0B协议。在设计中考虑到通信节点不多,故采用了Basic CAN工作模式。设置CAN总线通信波特率为200KB/S。CAN总线的驱动器采用PCA82C250,它是协议控制器和物理传输线路之间的接口芯片,此器件对总线上的数据提供差动发送能力,对CAN控制器提供差动接收能力。在控制器和收发器之间采用高速光电耦合器6N137,提高了系统的抗干扰性能和安全性能。微处理器采用AT89C52,内部具有8K的Flash Rom,满足了程序设计要求,无需外扩程序存储器。为确保系统工作可靠,外加一片看门狗芯片X5045来防止程序“跑飞”和存储一些系统参数。
3.2数据I/O接口
1 模拟量I/O电路
模拟量接口采用芯片TLC2543,TLC2543是TI公司的具有11个通道的12位开关电容逐次逼近串行A/D转换器,采样率为66kbit/s,采样和保持由片内采样保持电路自动完成。此多通道、小体积的TLC2543器件节省接口资源,成本低,特别适用于单片机数据采集系统的开发。由于多数的现场传感器输出是4~20mA电流信号,故系统采用Burr Brown公司的RCV420芯片进行I/V转换,RCV420是一种精密的电流/电压转换器,可靠性高,成本低,可将4~20mA的环路电流变换成0~5V的电压输出,直接输入到AD转换芯片TLC2543的相应通道即可。RCV420详细工作原理见参考文献[3]。