·上一文章:TMS320F2812程序的远程升级方法
·下一文章:21电子纸显示控制器S1D13521的人机交互设计
1 电路结构
图1给出了四倍频逆变器的主电路结构图。该电源采用AC/DC/AC结构,输入经三相不控整流得到脉动的直流电压,再经过滤波环节C0得到平滑的直流电压,送入采用负载串联谐振式单相全桥逆变器,在感应线圈上产生高频电压和电流。逆变电路的每个桥臂都由4个IGBT开关器件并联而成,CD为隔直电容;T为高频变压器用于负载匹配;R,L为感应线圈等效电感和电阻;补偿电容C组成变压器二次侧谐振槽路。
2 控制策略的分析
传统的逆变器工作方式是每个桥臂并联的IGBT在每个开关周期同时工作。在散热条件一定的情况下,为了提高输出频率,IGBT必须增加电流定额,而且并联器件的均流也是一个问题,输出频率的提高也很有限。将逆变器每个桥臂的IGBT进行分时控制,可避免这些缺点,实现输出频率的提高,它的工作原理见图2。
从图2可以看出,由Q1a~Q4a构成第一组逆变桥,由Q1b~Q4b构成第二组逆变桥,由Q1c~Q4c构成第三组逆变桥,由Q1d~Q4d构成第四组逆变桥,四组逆变桥轮流导通一个谐振周期。这样,如果IGBT允许的开关频率为f0,则电源的输出频率为4f0。同时,采用相位调功方式,通过调节开关管的导通宽度来调节输出电流与电压的滞后角度ψ来调节输出功率。通过检测负载电流过零点,调节开关管的导通时间,使它的超前电流一个角度ψ,ψ从O~90°可调,根据P=UIcosψ可知,改变ψ可实现调功的目的。逆变器的具体工作过程分析如图3所示。