大部分磁芯由粉状磁性材料和陶瓷等粘合材料构成。一个未使用过的磁芯可以简单地想象成由一层薄薄的粘合材料包裹、彼此独立、具有随机方向性的大量磁针。由于目前还没有能够很好解释磁芯损耗的统一模型,所以采用上述这个经验模型解释磁芯损耗,在本文最后的参考文献中有更深入的磁芯模型,供读者参考。
磁性方向近似的邻近磁针会互相影响,从而形成“联盟”。虽然这些磁针由粘合材料包裹,物理上彼此独立,但它们之间的磁场是相互关联的。我们称这些“联盟”为“单元”。而单元的边界就是内部“联盟”与外部磁针的分割面。在单元的边界外的磁针比较难与边界内的“联盟”联合。我们称这些边界为“单元壁”,这个模型常用来解释磁芯的许多基本参数。
在对磁芯施加磁场时(对线圈施加电流),方向不同的单元相互之间相关联。当足够强的电流形成外加磁场时,那些靠近线圈的单元所处的磁场更强,会首先形成联合(更大的单元)。而此时处在深一层的单元还未受到磁场的影响。联合起来的单元与未受到影响的单元之间的单元壁会在磁场的作用下,持续向磁芯中心移动。如果线圈中的电流不撤销或翻转的话,整个磁芯都将会联合在一起。整个磁芯的磁针联合在一起,我们称为“饱和”。电感制造商给出的B-H磁滞回线正表示磁芯从被磁化的初始阶段到饱和阶段的过程。如果将电流减弱,那么单元就会向自由的初始态转变,但是有些单元会继续保持联合的状态。这种不完全的转化就是剩磁(可以在磁滞回线中看出)。这种剩磁现象就会在下一次单元结合时体现为应力,导致磁芯损耗。
每个周期内的磁滞损耗为:
WH=mH×dI
式中积分为磁滞回线中的包罗面积,磁芯从初始电感量到峰值电感量,再回到初始电感量的整个过程。而在开关频率为F时的能量损耗为:
PH = F×mH×dI
计算这些交流损耗看起来似乎容易。但是在高频、中等通流密度下,情况将异常复杂。每个电路都存在一些对磁芯损耗有影响的参数,而这些参数一般都很难量化。比如:离散电容、pcb布局、驱动电压、脉冲宽度、负载状态、输入输出电压等。不幸的是,磁芯损耗受这些参数影响很严重。
每个磁芯材料都有能导致损耗的非线性电导率。正是这个电导率,会由于外加磁场而在磁芯内部诱发会产生损耗 “涡电流”。在恒定磁通量下,磁芯损耗大致与频率n次方成正比。其中指数n会随磁芯材料以及制造工艺不同而不同。通常的电感制造商会通过磁芯损耗曲线拟合出经验的近似公式。
电感参数
磁感应强度B在正激开关电路中可以由下式表示:
Bpk = Eavg/(4×A×N×f)
式中Bpk为尖峰交流通流密度(Teslas);Eavg为每半周期平均交流电压;A为磁芯横截面积(平方米);N为线圈匝数;f为频率(赫兹)。
一般来讲,磁性材料制造商会评估磁芯的额定电感系数-AL。通过AL可以很容易的计算出电感量。
L = N2AL
其中AL与磁性材料的掺杂度成正比,也与磁芯的横截面积除以磁路长度成正比。磁芯的总损耗等于磁芯的体积乘以Bpk乘以频率,单位为瓦特/立方米。其与制造材料与制造工艺息息相关。