伴随着科技的进步,电动汽车技术得到迅速的发展,相比内燃机汽车,电动汽车具有零排放、高性能效率、低噪声、低热辐射、易操纵和易维护等优点,将是未来汽车发展的方向,也是现行研究的热点。 电动汽车的动力电池有如下三类:燃料电池、蓄电池和超级电容。燃料电池、蓄电池和超级电容在能量密度和功率密度上有互补性[1]。单一使用蓄电池、绕料电池或者超级电容,难以用作电动汽车的动力源。混合电池是一比较理想的解决方法,采用混合电池驱动系统,特别利用超级电容快速充放电能实现汽车制动能量回收,以及燃料电池超大能量密度支持汽车持久行驶,使得燃料电池/超级电容组成的混合驱动系统成为电动车驱动的最佳方案[2]。 对于车载用电源,为达到较高功率和能量,超级电容往往采用多块单体串联的形式,伴随着电容串级的提升,电池整体电压也随之提高,对于车载电池,超级电容工作电压常达到几百伏,而这样高峰值的电压引起的波动会带来强烈的电磁干扰,为电容组件的检测带来很大的困难,同时由于串联超级电容往往采用大电流充放电(通常在50A-150A之间),电压、电流变化十分迅速,如中型客车用超级电容以150A电流放电时,端电压会在1分钟之内由300V减到70V,而200V恒压冲电时电流也会在几分钟内由50A增大到150A左右,这样迅速的充放电速度和幅度带来的噪音影响也是十分巨大。 针对超级电容特殊的工作状况,本论文给出一种超级电容电池检测系统,通过对超级电容组件进行充放电循环试验采集其电压、电流参数、并与标准参数对比,从而验证出本检测系统能在强电压电流变化情况下快速实现较高的检测精度。 1 检测系统原理及各模块实现 1.1 检测对象 测试用超级电容采用上海奥威科技开发有限公司提供的两组串联不对称电极双电层超级电容组件。 1.2 系统原理介绍 超级电容管理系统可以实现对超级电容工作电流和电压的实时采集,超级电容管理系统整体结构框图如图1所示,系统共由3个主要模块组成:现场电压、电流、采集与调理模块(即采集模块),信号隔离与MCU信号处理模块(即中央处理模块),电源管理模块,采集模块内、霍尔电压、霍尔电流传感器分别为超级电容电压和电流进行现场采集,采集信号经过仪用放大、然后转化为4mA-20mA电流信号并发送到中央处理模块,中央处理模块内,采集模块发送的4mA-20mA电流信号,经过电流电压变换后,再进行隔离放大、AD转换并送到MCU,MCU将数据处理后通过CAN接口传送到上位机,当检测到数据异常时MCU输出故障信号,以便工作人员能及时采取措施,电源管理模块为各功能模块提供稳定隔离的电压,增加RS232通信串口,以便MCU程序烧录。 1.3 各主要模块的实现
1.3.2 中央处理模块实现
采集模块输入的4mA-20mA电流信号首先经过模拟信号二次调理单元,进行信号的变送、隔离、滤波和放大。模 二次调理后的采集信号,经过12位高速AD7891送至MCU,MCU对数据进行处理并将数据通过CAN接口传送到上位机,单片机选用STC系列8位高速单片机STC89C58RD+。该单片机具有强抗干扰性,4kV快速脉冲干扰(EFT)和高抗静电(ESD),可通过6000V静电,很好地满足了超级电容高电压大电流的工作环境,该单片机可实现6时钟模式,在本系统采用24M晶振情况下,单片机工作频率可达到4MIPS,相当于普通51系列单片机运行速度的4倍。 另外,测试系统设置3通道故障诊断输出,能显示欠压、过压、过流等状态,测试系统与上位机采用抗干扰能力强、稳定性好的CAN通信方式,保证测试系统送入上位机数据的可靠性。 实际系统有模拟±15V,数字±5V,模拟±12V供电需求,电源管理模块在提供系统各部分所需电压的同时,进行模拟、数字电路隔离,从而避免两类电压互相影响,各部分电源入口都增加了TVS保护,防止浪涌电压对系统的损坏,同时在诸多电源入口处设置相应的滤波电路,如在AD供电入口处增加了π形滤波电路,较好地消除电源信号对所供电路的干扰。
| |||||
本文给出一种车载超级电容测试系统,该系统采用基于磁补偿原理的霍尔闭环电流、电压传感器采集总线信号,以抗高压脉冲干扰的STC51高速单片机进行信号处理,并采用仪用放大、电流传输、模拟信号隔离、5阶低通滤波等措施,尽可能地减少信号传输过程的噪音,通过对超级电容组件充放电测试,表明本系统具有抗干扰能力强,检测精度高等优点,能很好的满足车载超级电容高电压大电流环境下的测试要求。