首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
基于ARM的FPGA加载配置实现
来源:本站整理  作者:佚名  2007-05-23 10:28:00



引言

    基于SRAM工艺FPGA在每次上电后需要进行配置,通常情况下FPGA的配置文件由片外专用的EPROM来加载。这种传统配置方式是在FPGA的功能相对稳定的情况下采用的。在系统设计要求配置速度高、容量大、以及远程升级时,这种方法就显得很不实际也不方便。本文介绍了通过ARM对可编程器件进行配置的的设计和实现。

1 配置原理与方式

1.1 配置原理

    在FPGA正常工作时,配置数据存储在SRAM单元中,这个SRAM单元也被称为配置存储(Configuration RAM)。由于SRAM是易失性的存储器,因此FPGA在上电之后,外部电路需要将配置数据重新载入到片内的配置RAM中。在芯片配置完成后,内部的寄存器以及I/O管脚必须进行初始化。等初始化完成以后,芯片才会按照用户设计的功能正常工作。 

1.2 配置方式

    根据FPGA在配置电路中的角色,其配置数据可以使用3种方式载入到目标器件中:

·FPGA主动(Active)方式;

·FPGA 被动(Passive)方式;

·JT

AG 方式;

   在FPGA 主动方式下,由目标FPGA来主动输出控制和同步信号(包括配置时钟)给专用的一种串行配置芯片,在配置芯片收到命令后,就把配置数据发到FPGA,完成配置过程。在被动方式下,由系统中的其他设备发起并控制配置过程,FPGA只输出一些状态信号来配合配置过程。被动方式包括被动串行PS(Passive Serial )、快速被动并行FPP(Fast Passive Parallel)、被动并行同步PPS(Passive Parallel Serial)、被动并行异步PPA(Passive Parallel Asynchronous)、以及被动串行异步PSA(Passive Serial Asynchronous)。JTAG是IEEE 1149.1边界扫描测试的标准接口。从JTAG接口进行配置可以使用Altera的下载电缆,通过Quartus工具下载,也可以采用微处理器来模拟JTAG时序进行配置。

2 硬件电路设计

    AT91ARM9200对EP1C6配置的硬件电路示意图如图1所示。

    在配置FPGA时,首先需要将年nCONFIG拉低(至少40us), 然后拉高。当nCONFIG被拉高后,FPGA的nSTATUS也将变高,表示这时已经可以开始配置,外部电路就可以用DCLK的时钟上升沿一位一位地将配置数据写进FPGA中。当最后一个比特数据写入以后,CONFIG_DONE管脚被FPGA释放,被外部的上拉电阻拉高,FPGA随即进入初始化状态。

ARM配置FPGA电路原理图

  图 1 ARM配置FPGA电路原理图

3 软件设计

    本文在设计时使用Linux系统,软件编写和调试是在ADS 下。主要程序如下:

static AT91PS_PIO pioc;

inline void pioc_out_0 (int mask)

{

  pioc->PIO_CODR = mask;

}

inline void pioc_out_1 (int mask)

{

  pioc->PIO_SODR = mask;

}

inline int pioc_in (int mask)

{

  return pioc->PIO_PDSR & mask;

}

inline void xmit_byte (char c)

{

  int i;

  for (i = 0; i < 8; i++)

  {

  if (c & 1)

           pioc_out_1 (DATA0);

      else

           pioc_out_0 (DATA0);

           pioc_out_0 (DCLK);

           pioc_out_1 (DCLK);

      c >>= 1;

   }

}

void pioc_setup ()

{

   pioc->PIO_PER   =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

   pioc->PIO_OER   =DATA0 | nCONFIG | DCLK;

   pioc->PIO_ODR   =nSTATUS | CONF_DONE;

   pioc->PIO_IFER   =nSTATUS | CONF_DONE;

   pioc->PIO_CODR   =DATA0 | nCONFIG | DCLK;

    pioc->PIO_IDR   =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

   pioc->PIO_MDDR =DATA0 | nCONFIG | DCLK;

   pioc->PIO_PPUDR =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

   pioc->PIO_OWDR =DATA0 | nCONFIG | DCLK | nSTATUS | CONF_DONE;

}

int pioc_map ()

{

    int fd;

    off_t addr = 0xFFFFF800;   // PIO controller C

    static void *base;

    if ((fd = open ("/dev/mem", O_RDWR | O_SYNC)) == -1)

     {

       printf ("Cannot open /dev/mem. ");

       

return 0;

     }

    printf ("/dev/mem opened. ");

    base = mmap (0, MAP_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, addr & ~MAP_MASK);

    if (base == (void *) -1)

    {

    printf ("Cannot mmap. ");

      return 0;

    }

    printf ("Memory mapped at address %p. ", base);

    pioc = base + (addr & MAP_MASK);

    return 1;

}

int main (int argc, char **argv)

{

    FILE *file;

    char data[16];

    int nbytes, i;?

    if (argc != 2)

   {

      printf ("%s ", argv[0]);

      return -1;

   }

    file = fopen (argv[1], "r");

    if (!file)

   {

       printf ("File %s not found. ", argv[1]);

       return -1;

   }

   if (!pioc_map ())

        return -1;

   pioc_setup ();

   pioc_out_0 (nCONFIG);

   for (i = 0; i < 10000 && pioc_in (nSTATUS); i++) { }

   if (i == 10000)

   {

       printf ("nSTATUS = 1 before attempting configuration. ");

       return -1;

    }

    pioc_out_1 (nCONFIG);

    for (i = 0; i < 10000 && !pioc_in (nSTATUS); i++) { }

    if (i == 10000)

    {

    printf ("Timeout waiting for nSTATUS = 1. ");

       return -1;

    }

    while ((nbytes = fread (data, sizeof (char), sizeof (data), file)) > 0)

    {

       if (pioc_in (CONF_DONE))

       {

             printf ("CONF_DONE = 1 while transmitting data. ");

             return -1;

        }

        if (!pioc_in (nSTATUS))

        {

           printf ("nSTATUS = 0 while transmitting data. ");

           return -1

;

        }

        for (i = 0; i < nbytes; i++)

             xmit_byte (data[i]);

   }

   for (i = 0; i < 10000 && !pioc_in (CONF_DONE); i++)

   {

       if (!pioc_in (nSTATUS))

       {

          printf ("nSTATUS = 0 while transmitting data. ");

          return -1;

       }

       pioc_out_0 (DATA0);

       pioc_out_0 (DCLK);

       pioc_out_1 (DCLK);

   }

   if (i == 10000)

   {

          printf ("Timeout waiting for CONF_DONE = 1. ");

          return -1;

   }

   return 0;

}

4 结论

    本文给出了基于ARM的FPGA加载配置软件实现。这种方法充分利用了ARM的速度快、灵活的特点,节省了开发成本,又满足了一些特殊的系统设计要求。本方法也适用于其它的微处理器。

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:112,898.40000 毫秒