1.3 各主要模块的实现
本测试系统分别采用四块电路板,以实现三大功能模块——采集模块、中央处理模块和电源管理模块。即电压采集与初调理板、中央处理板以及电源板。下边着重介绍电压、电流采集模块和中央处理模块的实现。
1.3.1 采集模块的实现
采集模块包括总线电流的采集、总线电压的采集两个部分,图2即为电流采集原理图。采用霍尔电流传感器隔离被测系统,比传统的基于电阻采样的电流分压电路精度高,安全性能好,抗干扰能力强。本文选用Honywell公司的基于磁补偿原理的霍尔闭环电流传感器CSNK591,测量范围±1200A,线性精度达到0.1%,总体精度达到0.5%,响应速度小于1μs,完全满足了系统的要求。采集信号经精密电阻转变为电压信号,再由仪用放大器放大为±5V双极性电压信号。系统选用AD620BR仪用放大芯片,该芯片在增益较低时具有较大的共模抑制比(G=10时,共模抑制比最小为100dB),能较强地抑制由于温度、电磁噪声等因素引起的共模干扰。放大信号通过OP27GS芯片抬升至0~10V单极性信号,经过射极跟随器送至变送器XTR110KU,转为4mA~20mA的电流信号送到中央处理模块。之所以将采集信号转变为4mA~20mA电流信号,是考虑到与工业接口标准的统一,并且采用电流传输抗干扰能力强。
总线电压的采集同样选用基于磁补偿原理的闭环霍尔电压传感器VSM025A,实现原理与电流采集相同。
1.3.2 中央处理模块实现
中央处理模块是测试系统的核心部分,包括MCU和AD单元、模拟信号二次调理单元、故障输出单元和CAN接口单元等,如图3所示。
采集模块输入的4mA~20mA电流信号首先经过模拟信号二次调理单元,进行信号的变送、隔离、滤波和放大。模拟信号的隔离方式很多,常用的方法为隔离放大器、线性光耦以及电压频率转化,其中隔离放大器和线性光耦隔离电压高,抗干扰能力强,线性度高,但线性光耦隔离线路复杂,需要调整的参数较多,并且当输入电压比较小时,线性度较差。故本文选用BB公司高精度ISO124U隔离运算放大器完成输入模拟信号的隔离,隔离后的信号经5阶Butterworth低通滤波MAX280电路过滤高频干扰,随后通过一射极跟随器送出。
二次调理后的采集信号,经过12位高速AD7891送至MCU。MCU对数据进行处理并将数据通过CAN接口传送到上位机。单片机选用STC系列8位高速单片机STC89C58RD+。该单片机具有强抗干扰性,4kV快速脉冲干扰(EFT)和高抗静电(ESD),可通过6000V静电,很好地满足了超级电容高电压大电流的工作环境。该单片机可实现6时钟模式,在本系统采用24M晶振情况下,单片机工作频率可达到4MIPS,相当于普通51系列单片机运行速度的4倍。
另外,测试系统设置3通道故障诊断输出,能显示欠压、过压、过流等状态。测试系统与上位机采用抗干扰能力强、稳定性好的CAN通信方式,保证测试系统送入上位机数据的可靠性。
实际系统有模拟±15V,数字±5V,模拟±12V供电需求,电源管理模块在提供系统各部分所需电压的同时,进行模拟、数字电路隔离,从而避免两类电压互相影响。各部分电源入口都增加了TVS保护,防止浪涌电压对系统的损坏。同时在诸多电源入口处设置相应的滤波电路,如在AD供电入口处增加了π形滤波电路,较好地消除电源信号对所供电路的干扰。
另外,外部连线均采用屏蔽线,能较强地屏蔽线路传输中的电磁干扰。所有电流板使用型材铝盒包装,采用标准航空接头与外界联线,这样在保护电路板的同时隔离外界磁场。
2 测试系统实测结果对比及分析
2.1 测试内容
实验选定以70A和150A两种模式对两组串联的超级电容组件进行充放电测试。首先,对电容进行恒流充电,当总线电压达到300V时,转为恒压充电,当总线电流降低到10A时进行70A恒流放电,如此循环测试5个周期。
2.2 实验结果及分析
图4、图5、图6给出了两种情况下的测试曲线对比。其中,图4表示70A和150A两种标准测试情况下,电流的变化曲线。图5、图6表示两种情况下,电压曲线特性。可以看出两者的匹配程度很好。电压测试精度高于电流测试精度,这是由于一方面充放电系统本身电压比电流控制精度要高,另一方面电流传感器安置在电容箱体内并且紧靠单体电容,电容充放电时产生的噪声干扰比较严重。同时,霍尔电流传感器孔径较大,穿过电流总线后仍有一定空隙,在一定程度上影响了测试精度。对比各组电流曲线,可以看出随着电流的增大,测试结果的相对误差减小,但绝对误差保持一致,不超过3A。
本文给出一种车载超级电容测试系统,该系统采用基于磁补偿原理的霍尔闭环电流、电压传感器采集总线信号,以抗高压脉冲干扰的STC51高速单片机进行信号处理,并采用仪用放大、电流传输、模拟信号隔离、5阶低通滤波等措施,尽可能地减少信号传输过程的噪音。通过对超级电容组件充放电测试,表明本系统具有抗干扰能力强、检测精度高等优点,能很好的满足车载超级电容高电压大电流环境下的测试要求。
参考文献
1 林成涛,陈全世.燃料电池客车动力系统结构分析[J].公路交通科技,2003;20(5):2
2 雄 奇,唐东汉.超级电容器在混合电动车上的研究进展[J].中山大学学报(自然科学版),2003;42(suppl)(2)