·上一文章:智能化电机车防撞系统的可行性研究
·下一文章:基于nRF4O1的无线排队机设计
在PWM中断服务子程序中,实时读取RDC电路的输出信号,作为SVPWM控制算法的角度依据; RDC电路的输出信号与电机转子位置信息相对应,可计算出伺服系统的转速和位置信号,并根据A /D采样获得的电流信号,计算实时误差,实现系统闭环控制,产生新的PWM占空比,通过调节占空比,控制作为伺服驱动单元的无刷直流电动机的转速,达到实现伺服系统高精度控制的目的。
4 实验结果与结论
伺服系统采用的两台无刷直流电动机实验样机主要参数为:额定功率80W,额定电压28 V,最高转速1 500 r/min,极对数p = 2,相电阻R = 0. 42Ω,相电感L = 2. 1 mH。系统工作时的PWM斩波频率为25 kHz, SVPWM采用双极性调制技术。
图5a是左右通道经过RC滤波后的一相电压波形,图5b是单台伺服电机工作时的相电流波形,图5c是伺服系统的起动加速曲线。采用软起动方式初始加速时间稍长,但对伺服系统具有一定的保护功能;并且系统采用了软起动技术,使得在加速阶段转速超调几乎为零,保证了系统的精度。系统运行在最高转速时,在10 min内测量到的最大角度误差为1. 87°,而最大转速偏差为±1. 0%。由于采用了高精度的旋转变压器作为检测元件,伺服系统的最低转速低至0. 1r /min,满足了低速场合的要求。实验结果表明,利用TMS320F2812同时控制两台伺服电机,利用合理的控制算法和高精度传感器,能够获得较高的控制精度,满足设计目标的要求。