3.4 双机数据传输
为达到采集数据的实时可控性,系统设计双机通信接口作为单片机A/D转换数据向计算机传输的通道。计算机采用WDM下的EPP模式通信,速度达500 KB/s~2 MB/s。使用双端口RAM IDT7130作为主要元件,通过通信接口,单片机将A/D转换数据存入双端口RAM中,计算机则实时显示从双端口RAM中读取的数据。单片机通过双端口RAM IDT7130的A端口进行写操作,计算机则通过B端口进行读操作。握手信号由单片机通过对ROAD信号计数产生,二者可异步读写操作,实现数据交换。图5为单片机与计算机接口电路。
4 系统软件设计
4.1 数据标定
在给定Vref=5 V,设单片机采集端口输入电压为Vin与之相对应的A/D转换数字量为X,则X=1 024 Vin/5V。对于线性变换预处理电路可采用Y=5KX/1 024,其中,Y表示电压实测值,X表示与Y对应的A/D转换值,K为放大器增益。令K=Ymax/5 V,其中Ymax表示待测量电压的最大值。为保证采集精度,应先计算Ymax,以保持足够的A/D转换有效数字。以待采集电压0~27 V为例,预处理电路增益为27/5=5.4。
4.2 实时显示
读数及显示软件在VC++6.0环境下编写,使用对话框模式,并口采用WDM驱动方式。软件运行时直接打开驱动设备,同时使用AfxBeginThread()函数生成一个新线程,其控制线程函数实时更新读取并显示数据。由于单片机采用1O位A/D转换器,所以一次转换结果分两次传输,分别为高位和低位传输。并口数据传输也采用8位方式。上位机在读取数据后,2组数据经移位、加法运算后得出一个完整数据,标定后在计算机界面显示。
5 结论
实践证明,该实时采集显示系统完全满足导引头的检测需求。采集电压精度可达mV级,刷新率在1.56 k/s以上。该系统采用单片机和CPLD技术,电路设计结构简单,实际应用可靠性高、通用性强、使用灵活,且采集通道具有扩展性。但在电路设计过程中应注意:由于系统既有模拟电路又有数字电路,所以合理布线对系统至关重要,应采取合理布线措施以保证基准地线的稳定性,从而提高采集精度。