2.3 裂纹分析
裂纹分显裂和隐裂,前者可以通过肉眼直接观察到,而隐裂片即使通过显微镜也难以察觉。如图5所示,图5(a)为显裂片,裂纹区域对应在PL图片上是一块灰度低的区域(方框处),如光学显微镜所示。隐裂片的PL图像和光学照片如图5(b)所示,通过PL图像可以在电池左右下角发现十字形裂纹,而在500倍的光学显微镜下却没发现任何异常。研究发现,十字形隐裂可能产生于由扩散工艺诱生的二次缺陷。众所周知,虽然Si材料在室温下极脆,但是当其到达熔点温度的60%(约740℃)以上时具有韧性。当装有Si片的石英舟被推入高温扩散炉时,具有很大面积厚度比的Si片受到的不均匀加热使得Si片中产生很大的温度梯度,相应地产生了很大的热应力,当应力超过Si的屈服强度时,扩散诱生缺陷就会产生。若组件中出现隐裂电池片,在经过热力循环、拉力等可靠性测试时很可能演变为破碎,将影响到整个组件的发电量,甚至威胁到整个光伏电站的安全。
2.4 其他情况
PL还可以校验其他参数,例如扩散长度、位错密度、电极不良、氧含量及过渡金属杂质浓度等,这取决于CCD的灵敏度。PL的测量范围能够从刚切割的Si片到电池,可以依次在每步测量结果的基础上,*估任一单独的工艺对最终电池功效的影响,在工艺卫生方面更是起着监督作用。本文关注的是单晶Si太阳电池检测,对于多晶Si电池,晶界处会出现灰度降低情况,但并不影响整体分析效果。PL成像优势包括测量时间短;对样品没有丝毫破坏性;非接触测量,可以支持Si片薄片化趋势;测量能在室温下进行,测量对象与光源之间的距离灵活可调,因此对样品尺寸没有限制。理论上PL可以测量电池串和组件,但实际上要使光均匀照射在组件上还是具有挑战性,因此PL多用于电池的质量控制。
3 结语
利用光致发光检测可以立即发现生产中存在的问题,及时排除,从而提高电池平均效率。目前,PL仍处于定性的检测阶段,技术的开发方向是引入与发光强度相应的量化指标,量化指标对于太阳电池生产的指导意义更大。PL取代接触式测量方法是其一大优势,具有在生产中规模化应用的巨大潜力。