2 结果与分析
2.1 原材料原因
单晶Si由于本身内部长程有序的晶格结构,其电池效率明显高于多晶Si电池,是Si基高效太阳电池的首选材料。然而,单晶Si内部杂质和晶体缺陷的存在会影响太阳电池的效率,比如:B-O复合体的存在会导致单晶电池的光致衰减;内部金属杂质和晶体缺陷(位错等)的存在会成为少数载流子的复合中心,影响其少子寿命。图2为高效率电池光致发光图像,发现除电池栅线外图像灰度均匀。
图3为Si片原材料存在严重缺陷的电池PL图片,分别俗称“黑边”和“黑心”片,PL图像中的黑心和黑边是反映在光照条件下该部分发出的1 150 nm的红外光强度较其他部分弱,说明该处有影响电子和空穴的辐射复合的因素存在。对于直拉单晶Si,拉棒系统中的热量传输过程对晶体缺陷的形成与生长起着决定性的作用。提高晶体的温度梯度,能提高晶体的生长速率,但过大的热应力极易产生位错。在图3(b)中甚至可以很清楚地看到旋涡缺陷,旋涡缺陷是点缺陷的*,产生于晶体生长时,微观生长速率受热起伏而产生的周期性变化造成杂质有效分凝系数起伏造成的。旋涡缺陷典型位错密度为106~107cm-3,远高于太阳能级单晶Si片所要求的缺陷密度(小于3 000 cm-3)。
原材料缺陷势必导致Si衬底非平衡少数载流子浓度降低,造成扩散结面不平整,p-n结反向电流变大,从而影响太阳电池效率。
2.2 扩散工艺
扩散是制备晶体Si太阳电池的关键工艺步骤,其直接决定着电池的光电转换效率。扩散的要求是获得适合于太阳电池p-n结需要的结深和扩散层的方块电阻,当p-n结较浅时,电池短波响应好,但同时浅结会引起串联电阻增加。结深过深,死层比较明显,高扩散浓度会引起重掺杂效应,使电池开路电压和短路电流均下降。在利用丝网印刷制电极的电池制作中,考虑到各个因素,太阳电池的结深一般控制在0.3~0.5μm,方块电阻在40~50Ω/□,选择的热扩散方法为液态源扩散法。Si片单片方块电阻的均匀性是衡量高温扩散效果的重要指标。方块电阻均匀性的提高使得电池的p-n结平整性变好,能够提高光生载流子的收集概率,增加短路电流,进而提高电池的转换效率。
图4(a)PL图像右侧出现阴影,还可以看到清晰手指印(方框处),说明生产过程存在工艺污染现象。该电池片的光生诱导电流测试图如图4(b),可以看到与PL图像对应处的诱导电流很低,也验证了电池对应区域存在载流子的强复合中心。利用硝酸溶液将电池电极腐蚀掉,通过四探针测试仪测量方块电阻,发现右侧方块电阻很大,扩散严重不均匀。